
Entrez Programming Utilities Help
Last Updated: 51, 2.02

National Center for Biotechnology Information (US)
Bethesda (MD)

National Center for Biotechnology Information (US), Bethesda (MD)

NLM Citation: Entrez Programming Utilities Help [Internet]. Bethesda (MD): National Center for Biotechnology Information (US);
2010-.

• Please see the E-utilities Introduction video for a brief introduction.
• Please see the Release Notes for details and changes.

The Entrez Programming Utilities (E-utilities) are a set of eight server-side programs that
provide a stable interface into the Entrez query and database system at the National Center
for Biotechnology Information (NCBI). The E-utilities use a fixed URL syntax that translates
a standard set of input parameters into the values necessary for various NCBI software
components to search for and retrieve the requested data. The E-utilities are therefore the
structured interface to the Entrez system, which currently includes 38 databases covering a
variety of biomedical data, including nucleotide and protein sequences, gene records, three-
dimensional molecular structures, and the biomedical literature.

iii

https://www.youtube.com/watch?v=BCG-M5k-gvE
https://www.ncbi.nlm.nih.gov/books/n/helpeutils/chapter4/#chapter4.Release_Notes

Table of Contents

E-utilities Quick Start ... 1

Release Notes.. 1

Announcement .. 1

Introduction.. 1

Searching a Database .. 1

Uploading UIDs to Entrez ... 3

Downloading Document Summaries.. 4

Downloading Full Records ... 7

Finding Related Data Through Entrez Links.. 8

Getting Database Statistics and Search Fields .. 9

Performing a Global Entrez Search ... 10

Retrieving Spelling Suggestions .. 11

Demonstration Programs .. 12

For More Information .. 16

A General Introduction to the E-utilities .. 17

Introduction.. 17

Usage Guidelines and Requirements... 17

The Nine E-utilities in Brief ... 19

Understanding the E-utilities Within Entrez.. 20

Combining E-utility Calls to Create Entrez Applications ... 24

Demonstration Programs .. 25

For More Information .. 25

Sample Applications of the E-utilities ... 27

Introduction.. 27

Basic Pipelines... 27

ESearch – ESummary/EFetch.. 27

EPost – ESummary/EFetch ... 28

ELink – ESummary/Efetch .. 29

ESearch – ELink – ESummary/EFetch.. 30

EPost – ELink – ESummary/EFetch ... 31

EPost – ESearch .. 32

ELink – ESearch .. 33

iv Entrez Programming Utilities Help

Application 1: Converting GI numbers to accession numbers... 33

Application 2: Converting accession numbers to data.. 34

Application 3: Retrieving large datasets... 35

Application 4: Finding unique sets of linked records for each member of a large dataset .. 35

Demonstration Programs .. 37

For More Information .. 37

The E-utilities In-Depth: Parameters, Syntax and More ... 39

Introduction.. 39

General Usage Guidelines ... 39

E-utilities DTDs .. 39

EInfo .. 40

ESearch... 40

EPost .. 44

ESummary.. 45

EFetch.. 47

ELink .. 54

EGQuery .. 59

ESpell .. 59

ECitMatch... 60

Release Notes.. 61

Demonstration Programs .. 61

For More Information .. 62

The E-utility Web Service (SOAP) ... 63

Termination Announcement ... 63

For More Information .. 63

Entrez Direct: E-utilities on the Unix Command Line ... 65

Getting Started.. 65

Searching and Filtering... 70

Structured Data ... 74

Complex Objects .. 83

Sequence Records .. 92

Sequence Coordinates .. 97

Gene Records.. 99

Contents v

External Data ..101

Local PubMed Cache...105

Automation ..112

Additional Examples ...123

Appendices..124

Release Notes..128

For More Information ..128

vi Entrez Programming Utilities Help

E-utilities Quick Start
Eric Sayers, PhD 1

Created: December 12, 2008; Updated: October 24, 2018.

Release Notes
Please see our Release Notes for details on recent changes and updates.

Announcement
On December 1, 2018, NCBI will begin enforcing the use of new API keys for E-utility calls. Please see Chapter 2
for more details about this important change.

Introduction
This chapter provides a brief overview of basic E-utility functions along with examples of URL calls. Please see
Chapter 2 for a general introduction to these utilities and Chapter 4 for a detailed discussion of syntax and
parameters.

Examples include live URLs that provide sample outputs.

All E-utility calls share the same base URL:

https://eutils.ncbi.nlm.nih.gov/entrez/eutils/

Searching a Database

Basic Searching
esearch.fcgi?db=<database>&term=<query>

Input: Entrez database (&db); Any Entrez text query (&term)

Output: List of UIDs matching the Entrez query

Example: Get the PubMed IDs (PMIDs) for articles about breast cancer published in Science in 2008

https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?db=pubmed&term=science[journal]
+AND+breast+cancer+AND+2008[pdat]

Storing Search Results
esearch.fcgi?db=<database>&term=<query>&usehistory=y

Input: Any Entrez text query (&term); Entrez database (&db); &usehistory=y

Output: Web environment (&WebEnv) and query key (&query_key) parameters specifying the location on the
Entrez history server of the list of UIDs matching the Entrez query

Example: Get the PubMed IDs (PMIDs) for articles about breast cancer published in Science in 2008, and store
them on the Entrez history server for later use

Author Affiliation: 1 NCBI; Email: sayers@ncbi.nlm.nih.gov.

 Corresponding author.

1

https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?db=pubmed&term=science%5bjournal%5d+AND+breast+cancer+AND+2008%5bpdat%5d
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?db=pubmed&term=science%5bjournal%5d+AND+breast+cancer+AND+2008%5bpdat%5d

https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?db=pubmed&term=science[journal]
+AND+breast+cancer+AND+2008[pdat]&usehistory=y

Associating Search Results with Existing Search Results
esearch.fcgi?db=<database>&term=<query1>&usehistory=y

esearch produces WebEnv value ($web1) and QueryKey value ($key1)

esearch.fcgi?db=<database>&term=<query2>&usehistory=y&WebEnv=$web1

esearch produces WebEnv value ($web2) that contains the results
of both searches ($key1 and $key2)

Input: Any Entrez text query (&term); Entrez database (&db); &usehistory=y; Existing web environment
(&WebEnv) from a prior E-utility call

Output: Web environment (&WebEnv) and query key (&query_key) parameters specifying the location on the
Entrez history server of the list of UIDs matching the Entrez query

For More Information
Please see ESearch In-Depth for a full description of ESearch.

Sample ESearch Output
<?xml version="1.0" ?>
<!DOCTYPE eSearchResult PUBLIC "-//NLM//DTD eSearchResult, 11 May 2002//EN"
 "https://www.ncbi.nlm.nih.gov/entrez/query/DTD/eSearch_020511.dtd">
<eSearchResult>
<Count>255147</Count> # total number of records matching query
<RetMax>20</RetMax># number of UIDs returned in this XML; default=20
<RetStart>0</RetStart># index of first record returned; default=0
<QueryKey>1</QueryKey># QueryKey, only present if &usehistory=y
<WebEnv>0l93yIkBjmM60UBXuvBvPfBIq8-9nIsldXuMP0hhuMH-
8GjCz7F_Dz1XL6z@397033B29A81FB01_0038SID</WebEnv>
 # WebEnv; only present if &usehistory=y
 <IdList>
<Id>229486465</Id> # list of UIDs returned
<Id>229486321</Id>
<Id>229485738</Id>
<Id>229470359</Id>
<Id>229463047</Id>
<Id>229463037</Id>
<Id>229463022</Id>
<Id>229463019</Id>
<Id>229463007</Id>
<Id>229463002</Id>
<Id>229463000</Id>
<Id>229462974</Id>
<Id>229462961</Id>
<Id>229462956</Id>
<Id>229462921</Id>
<Id>229462905</Id>
<Id>229462899</Id>
<Id>229462873</Id>
<Id>229462863</Id>
<Id>229462862</Id>

2 Entrez Programming Utilities Help

https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?db=pubmed&term=science%5bjournal%5d+AND+breast+cancer+AND+2008%5bpdat%5d&usehistory=y
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?db=pubmed&term=science%5bjournal%5d+AND+breast+cancer+AND+2008%5bpdat%5d&usehistory=y

</IdList>
<TranslationSet> # details of how Entrez translated the query
 <Translation>
 <From>mouse[orgn]</From>
 <To>"Mus musculus"[Organism]</To>
 </Translation>
</TranslationSet>
<TranslationStack>
 <TermSet>
 <Term>"Mus musculus"[Organism]</Term>
 <Field>Organism</Field>
 <Count>255147</Count>
 <Explode>Y</Explode>
 </TermSet>
 <OP>GROUP</OP>
</TranslationStack>
<QueryTranslation>"Mus musculus"[Organism]</QueryTranslation>
</eSearchResult>

Searching PubMed with Citation Data
ecitmatch.cgi?db=pubmed&rettype=xml&bdata=<citations>

Input: List of citation strings separated by a carriage return (%0D), where each citation string has the following
format:

journal_title|year|volume|first_page|author_name|your_key|

Output: A list of citation strings with the corresponding PubMed ID (PMID) appended.

Example: Search PubMed for the following ciations:

Art1: Mann, BJ. (1991) Proc. Natl. Acad. Sci. USA. 88:3248

Art2: Palmenberg, AC. (1987) Science 235:182

https://eutils.ncbi.nlm.nih.gov/entrez/eutils/ecitmatch.cgi?
db=pubmed&retmode=xml&bdata=proc+natl+acad+sci+u+s+a|1991|88|3248|mann+bj|Art1|%0Dscience|
1987|235|182|palmenberg+ac|Art2|

Sample Output (the PMIDs appear in the rightmost field):

proc natl acad sci u s a|1991|88|3248|mann bj|Art1|2014248
science|1987|235|182|palmenberg ac|Art2|3026048

Please see ECitMatch In-Depth for a full description of ECitMatch.

Uploading UIDs to Entrez

Basic Uploading
epost.fcgi?db=<database>&id=<uid_list>

Input: List of UIDs (&id); Entrez database (&db)

Output: Web environment (&WebEnv) and query key (&query_key) parameters specifying the location on the
Entrez history server of the list of uploaded UIDs

Example: Upload five Gene IDs (7173,22018,54314,403521,525013) for later processing.

E-utilities Quick Start 3

https://eutils.ncbi.nlm.nih.gov/entrez/eutils/ecitmatch.cgi?db=pubmed&retmode=xml&bdata=proc+natl+acad+sci+u+s+a|1991|88|3248|mann+bj|Art1|%0Dscience|1987|235|182|palmenberg+ac|Art2|
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/ecitmatch.cgi?db=pubmed&retmode=xml&bdata=proc+natl+acad+sci+u+s+a|1991|88|3248|mann+bj|Art1|%0Dscience|1987|235|182|palmenberg+ac|Art2|
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/ecitmatch.cgi?db=pubmed&retmode=xml&bdata=proc+natl+acad+sci+u+s+a|1991|88|3248|mann+bj|Art1|%0Dscience|1987|235|182|palmenberg+ac|Art2|

https://eutils.ncbi.nlm.nih.gov/entrez/eutils/epost.fcgi?db=gene&id=7173,22018,54314,403521,525013

Associating a Set of UIDs with Previously Posted Sets
epost.fcgi?db=<database1>&id=<uid_list1>

epost produces WebEnv value ($web1) and QueryKey value ($key1)

epost.fcgi?db=<database2>&id=<uid_list2>&WebEnv=$web1

epost produces WebEnv value ($web2) that contains the results of both
posts ($key1 and $key2)

Input: List of UIDs (&id); Entrez database (&db); Existing web environment (&WebEnv)

Output: Web environment (&WebEnv) and query key (&query_key) parameters specifying the location on the
Entrez history server of the list of uploaded UIDs

For More Information
Please see EPost In-Depth for a full description of EPost.

Sample EPost Output
<?xml version="1.0"?>
<!DOCTYPE ePostResult PUBLIC "-//NLM//DTD ePostResult, 11 May 2002//EN"
 "https://www.ncbi.nlm.nih.gov/entrez/query/DTD/ePost_020511.dtd">
<ePostResult>
<QueryKey>1</QueryKey>
<WebEnv>NCID_01_268116914_130.14.18.47_9001_1241798628</WebEnv>
</ePostResult>

Downloading Document Summaries

Basic Downloading
esummary.fcgi?db=<database>&id=<uid_list>

Input: List of UIDs (&id); Entrez database (&db)

Output: XML DocSums

Example: Download DocSums for these protein GIs: 6678417,9507199,28558982,28558984,28558988,28558990

https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esummary.fcgi?
db=protein&id=6678417,9507199,28558982,28558984,28558988,28558990

Downloading Data From a Previous Search
esearch.fcgi?db=<database>&term=<query>&usehistory=y

esearch produces WebEnv value ($web1) and QueryKey value ($key1)

esummary.fcgi?db=<database>&query_key=$key1&WebEnv=$web1

Input: Web environment (&WebEnv) and query key (&query_key) representing a set of Entrez UIDs on the
Entrez history server

4 Entrez Programming Utilities Help

https://eutils.ncbi.nlm.nih.gov/entrez/eutils/epost.fcgi?db=gene&id=7173,22018,54314,403521,525013
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esummary.fcgi?db=protein&id=6678417,9507199,28558982,28558984,28558988,28558990
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esummary.fcgi?db=protein&id=6678417,9507199,28558982,28558984,28558988,28558990

Output: XML DocSums

Sample ESummary Output
The output of ESummary is a series of XML “DocSums” (Document Summaries), the format of which depends
on the database. Below is an example DocSum for Entrez Protein.

<?xml version="1.0"?>
<!DOCTYPE eSummaryResult PUBLIC "-//NLM//DTD eSummaryResult, 29 October
 2004//EN" "https://www.ncbi.nlm.nih.gov/entrez/query/DTD/eSummary_
041029.dtd">
<eSummaryResult>
<DocSum>
<Id>15718680</Id>
<Item Name="Caption" Type="String">NP_005537</Item>
<Item Name="Title" Type="String">IL2-inducible T-cell kinase [Homo
 sapiens]</Item>
<Item Name="Extra"
Type="String">gi|15718680|ref|NP_005537.3|[15718680]</Item>
<Item Name="Gi" Type="Integer">15718680</Item>
<Item Name="CreateDate" Type="String">1999/06/09</Item>
<Item Name="UpdateDate" Type="String">2009/04/05</Item>
<Item Name="Flags" Type="Integer">512</Item>
<Item Name="TaxId" Type="Integer">9606</Item>
<Item Name="Length" Type="Integer">620</Item>
<Item Name="Status" Type="String">live</Item>
<Item Name="ReplacedBy" Type="String"></Item>
<Item Name="Comment" Type="String"><![CDATA[]]></Item>
</DocSum>
</eSummaryResult>

Sample ESummary version 2.0 Output
Version 2.0 of ESummary is an alternate XML presentation of Entrez DocSums. To retrieve version 2.0
DocSums, the URL should contain the &version parameter with an assigned value of ‘2.0’. Each Entrez database
provides its own unique DTD for version 2.0 DocSums, and a link to the relevant DTD is provided in the header
of the version 2.0 XML.

esummary.fcgi?db=<database>&id=<uid_list>&version=2.0

Below is an example version 2.0 DocSum from Entrez Protein (the same record as shown above in the default
DocSum XML).

<?xml version="1.0"?>
<!DOCTYPE eSummaryResult PUBLIC "-//NLM//DTD eSummaryResult//EN" "https://
www.ncbi.nlm.nih.gov/entrez/query/DTD/eSummaryDTD/eSummary_protein.dtd">
<eSummaryResult>
 <DocumentSummarySet status="OK">
 <DocumentSummary uid="15718680">
 <Caption>NP_005537</Caption>
 <Title>tyrosine-protein kinase ITK/TSK [Homo sapiens]</Title>
 <Extra>gi|15718680|ref|NP_005537.3|</Extra>
 <Gi>15718680</Gi>

 <CreateDate>1999/06/09</CreateDate>
 <UpdateDate>2011/10/09</UpdateDate>
 <Flags>512</Flags>
 <TaxId>9606</TaxId>

E-utilities Quick Start 5

 <Slen>620</Slen>

 <Biomol/>

 <MolType>aa</MolType>
 <Topology>linear</Topology>
 <SourceDb>refseq</SourceDb>
 <SegSetSize>0</SegSetSize>
 <ProjectId>0</ProjectId>
 <Genome>genomic</Genome>

 <SubType>chromosome|map</SubType>
 <SubName>5|5q31-q32</SubName>
 <AssemblyGi>399658</AssemblyGi>
 <AssemblyAcc>D13720.1</AssemblyAcc>
 <Tech/>
 <Completeness/>
 <GeneticCode>1</GeneticCode>

 <Strand/>
 <Organism>Homo sapiens</Organism>
 <Statistics>
 <Stat type="all" count="8"/>
 <Stat type="blob_size" count="16154"/>
 <Stat type="cdregion" count="1"/>
 <Stat type="cdregion" subtype="CDS" count="1"/>
 <Stat type="gene" count="1"/>
 <Stat type="gene" subtype="Gene" count="1"/>
 <Stat type="org" count="1"/>
 <Stat type="prot" count="1"/>
 <Stat type="prot" subtype="Prot" count="1"/>
 <Stat type="pub" count="14"/>
 <Stat type="pub" subtype="PubMed" count="10"/>
 <Stat type="pub" subtype="PubMed/Gene-rif" count="4"/>
 <Stat type="site" count="4"/>
 <Stat type="site" subtype="Site" count="4"/>
 <Stat source="CDD" type="all" count="15"/>
 <Stat source="CDD" type="region" count="6"/>
 <Stat source="CDD" type="region" subtype="Region" count="6"/>
 <Stat source="CDD" type="site" count="9"/>
 <Stat source="CDD" type="site" subtype="Site" count="9"/>
 <Stat source="HPRD" type="all" count="3"/>
 <Stat source="HPRD" type="site" count="3"/>
 <Stat source="HPRD" type="site" subtype="Site" count="3"/>
 <Stat source="SNP" type="all" count="31"/>
 <Stat source="SNP" type="imp" count="31"/>
 <Stat source="SNP" type="imp" subtype="variation" count="31"/>
 <Stat source="all" type="all" count="57"/>
 <Stat source="all" type="blob_size" count="16154"/>
 <Stat source="all" type="cdregion" count="1"/>
 <Stat source="all" type="gene" count="1"/>
 <Stat source="all" type="imp" count="31"/>
 <Stat source="all" type="org" count="1"/>
 <Stat source="all" type="prot" count="1"/>
 <Stat source="all" type="pub" count="14"/>
 <Stat source="all" type="region" count="6"/>
 <Stat source="all" type="site" count="16"/>
 </Statistics>
 <AccessionVersion>NP_005537.3</AccessionVersion>

6 Entrez Programming Utilities Help

 <Properties aa="2">2</Properties>
 <Comment/>
 <OSLT indexed="yes">NP_005537.3</OSLT>
 <IdGiClass mol="3" repr="2" gi_state="10" sat="4" sat_key="58760802"
owner="20"
 sat_name="NCBI" owner_name="NCBI-Genomes" defdiv="GNM" length="620"
extfeatmask="41"
 />
 </DocumentSummary>

 </DocumentSummarySet>
</eSummaryResult>

Downloading Full Records

Basic Downloading
efetch.fcgi?db=<database>&id=<uid_list>&rettype=<retrieval_type>
&retmode=<retrieval_mode>

Input: List of UIDs (&id); Entrez database (&db); Retrieval type (&rettype); Retrieval mode (&retmode)

Output: Formatted data records as specified

Example: Download nuccore GIs 34577062 and 24475906 in FASTA format

https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?
db=nuccore&id=34577062,24475906&rettype=fasta&retmode=text

Downloading Data From a Previous Search
esearch.fcgi?db=<database>&term=<query>&usehistory=y

esearch produces WebEnv value ($web1) and QueryKey value ($key1)

efetch.fcgi?db=<database>&query_key=$key1&WebEnv=$web1&rettype=
<retrieval_type>&retmode=<retrieval_mode>

Input: Entrez database (&db); Web environment (&WebEnv) and query key (&query_key) representing a set of
Entrez UIDs on the Entrez history server; Retrieval type (&rettype); Retrieval mode (&retmode)

Output: Formatted data records as specified

Downloading a Large Set of Records
Please see Application 3 in Chapter 3

Input: Entrez database (&db); Web environment (&WebEnv) and query key (&query_key) representing a set of
Entrez UIDs on the Entrez history server; Retrieval start (&retstart), the first record of the set to retrieve;
Retrieval maximum (&retmax), maximum number of records to retrieve

Output: Formatted data records as specified

For More Information
Please see EFetch In-Depth for a full description of EFetch.

E-utilities Quick Start 7

https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=nuccore&id=34577062,24475906&rettype=fasta&retmode=text
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=nuccore&id=34577062,24475906&rettype=fasta&retmode=text

Finding Related Data Through Entrez Links

Basic Linking

Batch mode – finds only one set of linked UIDs
elink.fcgi?dbfrom=<source_db>&db=<destination_db>&id=<uid_list>

Input: List of UIDs (&id); Source Entrez database (&dbfrom); Destination Entrez database (&db)

Output: XML containing linked UIDs from source and destination databases

Example: Find one set of Gene IDs linked to nuccore GIs 34577062 and 24475906

https://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=nuccore&db=gene&id=34577062,24475906

‘By Id’ mode – finds one set of linked UIDs for each input UID
elink.fcgi?dbfrom=<source_db>&db=<destination_db>&id=<uid1>&id=
<uid2>&id=<uid3>...

Example: Find separate sets of Gene IDs linked to nuccore GIs 34577062 and 24475906

https://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?
dbfrom=nuccore&db=gene&id=34577062&id=24475906

Note: &db may be a comma-delimited list of databases, so that elink returns multiple sets of linked UIDs in a single
call

Finding Links to Data from a Previous Search
esearch.fcgi?db=<source_db>&term=<query>&usehistory=y

esearch produces WebEnv value ($web1) and QueryKey value ($key1)

elink.fcgi?dbfrom=<source_db>&db=<destination_db>&query_key=
$key1&WebEnv=$web1&cmd=neighbor_history

Input: Source Entrez database (&dbfrom); Destination Entrez database (&db); Web environment (&WebEnv)
and query key (&query_key) representing the set of source UIDs on the Entrez history server; Command mode
(&cmd)

Output: XML containing Web environments and query keys for each set of linked UIDs

Note: To achieve ‘By Id’ mode, one must send each input UID as a separate &id parameter in the URL. Sending a
WebEnv/query_key set always produces Batch mode behavior (one set of linked UIDs).

Finding Computational Neighbors Limited by an Entrez Search
elink.fcgi?dbfrom=<source_db>&db=<source_db>&id=<uid_list>&term=
<query>&cmd=neighbor_history

Input: Source Entrez database (&dbfrom); Destination Entrez database (&db); List of UIDs (&id); Entrez query
(&term); Command mode (&cmd)

Output: XML containing Web environments and query keys for each set of linked UIDs

Example: Find protein UIDs that are rat Reference Sequences and that are sequence similar to GI 15718680

8 Entrez Programming Utilities Help

https://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=nuccore&db=gene&id=34577062,24475906
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=nuccore&db=gene&id=34577062&id=24475906
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=nuccore&db=gene&id=34577062&id=24475906

https://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?
dbfrom=protein&db=protein&id=15718680&term=rat[orgn]
+AND+srcdb+refseq[prop]&cmd=neighbor_history

For More Information
Please see ELink In-Depth for a full description of ELink.

Getting Database Statistics and Search Fields
einfo.fcgi?db=<database>

Input: Entrez database (&db)

Output: XML containing database statistics

Note: If no database parameter is supplied, einfo will return a list of all valid Entrez databases.

Example: Find database statistics for Entrez Protein.

https://eutils.ncbi.nlm.nih.gov/entrez/eutils/einfo.fcgi?db=protein

For More Information
Please see EInfo In-Depth for a full description of EInfo.

Sample EInfo Output
<?xml version="1.0"?>
<!DOCTYPE eInfoResult PUBLIC "-//NLM//DTD eInfoResult, 11 May 2002//EN"
"https://www.ncbi.nlm.nih.gov/entrez/query/DTD/eInfo_020511.dtd">
<eInfoResult>
<DbInfo>
<DbName>protein</DbName>
<MenuName>Protein</MenuName>
<Description>Protein sequence record</Description>
<Count>26715092</Count>
<LastUpdate>2009/05/12 04:39</LastUpdate>
<FieldList>
<Field>
<Name>ALL</Name>
<FullName>All Fields</FullName>
<Description>All terms from all searchable fields</Description>
<TermCount>133639432</TermCount>
<IsDate>N</IsDate>
<IsNumerical>N</IsNumerical>
<SingleToken>N</SingleToken>
<Hierarchy>N</Hierarchy>
<IsHidden>N</IsHidden>
</Field>
...
<Field>
<Name>PORG</Name>
<FullName>Primary Organism</FullName>
<Description>Scientific and common names
of primary organism, and all higher levels of taxonomy</Description>
<TermCount>673555</TermCount>
<IsDate>N</IsDate>

E-utilities Quick Start 9

https://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=protein&db=protein&id=15718680&term=rat%5borgn%5d+AND+srcdb+refseq%5bprop%5d&cmd=neighbor_history
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=protein&db=protein&id=15718680&term=rat%5borgn%5d+AND+srcdb+refseq%5bprop%5d&cmd=neighbor_history
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=protein&db=protein&id=15718680&term=rat%5borgn%5d+AND+srcdb+refseq%5bprop%5d&cmd=neighbor_history
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/einfo.fcgi?db=protein

<IsNumerical>N</IsNumerical>
<SingleToken>Y</SingleToken>
<Hierarchy>Y</Hierarchy>
<IsHidden>N</IsHidden>
</Field>
</FieldList>
<LinkList>
<Link>
<Name>protein_biosystems</Name>
<Menu>BioSystem Links</Menu>
<Description>BioSystems</Description>
<DbTo>biosystems</DbTo>
</Link>
...
<Link>
<Name>protein_unigene</Name>
<Menu>UniGene Links</Menu>
<Description>Related UniGene records</Description>
<DbTo>unigene</DbTo>
</Link>
</LinkList>
</DbInfo>
</eInfoResult>

Performing a Global Entrez Search
egquery.fcgi?term=<query>

Input: Entrez text query (&term)

Output: XML containing the number of hits in each database.

Example: Determine the number of records for mouse in Entrez.

https://eutils.ncbi.nlm.nih.gov/entrez/eutils/egquery.fcgi?term=mouse[orgn]

For More Information
Please see EGQuery In-Depth for a full description of EGQuery.

Sample EGQuery Output
<?xml version="1.0"?>
<!DOCTYPE Result PUBLIC "-//NLM//DTD eSearchResult, January 2004//EN"
 "https://www.ncbi.nlm.nih.gov/entrez/query/DTD/egquery.dtd">
<!--
 $Id: egquery_template.xml 106311 2007-06-26 14:46:31Z osipov $
-->
<!-- === -->
<Result>
 <Term>mouse[orgn]</Term>
 <eGQueryResult>
 <ResultItem>
 <DbName>pubmed</DbName>
 <MenuName>PubMed</MenuName>
 <Count>0</Count>
 <Status>Term or Database is not found</Status>
 </ResultItem>
 <ResultItem>

10 Entrez Programming Utilities Help

https://eutils.ncbi.nlm.nih.gov/entrez/eutils/egquery.fcgi?term=mouse%5borgn%5d

 <DbName>pmc</DbName>
 <MenuName>PMC</MenuName>
 <Count>3823</Count>
 <Status>Ok</Status>
 </ResultItem>
...
 <ResultItem>
 <DbName>nuccore</DbName>
 <MenuName>Nucleotide</MenuName>
 <Count>1739903</Count>
 <Status>Ok</Status>
 </ResultItem>
 <ResultItem>
 <DbName>nucgss</DbName>
 <MenuName>GSS</MenuName>
 <Count>2264567</Count>
 <Status>Ok</Status>
 </ResultItem>
 <ResultItem>
 <DbName>nucest</DbName>
 <MenuName>EST</MenuName>
 <Count>4852140</Count>
 <Status>Ok</Status>
 </ResultItem>
 <ResultItem>
 <DbName>protein</DbName>
 <MenuName>Protein</MenuName>
 <Count>255212</Count>
 <Status>Ok</Status>
 </ResultItem>
...
 <ResultItem>
 <DbName>proteinclusters</DbName>
 <MenuName>Protein Clusters</MenuName>
 <Count>13</Count>
 <Status>Ok</Status>
 </ResultItem>
 </eGQueryResult>
</Result>

Retrieving Spelling Suggestions
espell.fcgi?term=<query>&db=<database>

Input: Entrez text query (&term); Entrez database (&db)

Output: XML containing the original query and spelling suggestions.

Example: Find spelling suggestions for the PubMed Central query ‘fiberblast cell grwth’.

https://eutils.ncbi.nlm.nih.gov/entrez/eutils/espell.fcgi?term=fiberblast+cell+grwth&db=pmc

For More Information
Please see ESpell In-Depth for a full description of EGQuery.

E-utilities Quick Start 11

https://eutils.ncbi.nlm.nih.gov/entrez/eutils/espell.fcgi?term=fiberblast+cell+grwth&db=pmc

Sample ESpell Output
<?xml version="1.0"?>
<!DOCTYPE eSpellResult PUBLIC "-//NLM//DTD eSpellResult, 23 November
2004//EN" "https://www.ncbi.nlm.nih.gov/entrez/query/DTD/eSpell.dtd">
<eSpellResult>
<Database>pmc</Database>
<Query>fiberblast cell grwth</Query>
<CorrectedQuery>fibroblast cell growth</CorrectedQuery>
<SpelledQuery>
 <Replaced>fibroblast</Replaced>
 <Original> cell </Original>
 <Replaced>growth</Replaced>
</SpelledQuery>
<ERROR/>
</eSpellResult>

Demonstration Programs

EBot
EBot is an interactive web tool that first allows users to construct an arbitrary E-utility analysis pipeline and then
generates a Perl script to execute the pipeline. The Perl script can be downloaded and executed on any computer
with a Perl installation. For more details, see the EBot page linked above.

Sample Perl Scripts
The two sample Perl scripts below demonstrate basic E-utility functions. Both scripts should be copied and saved
as plain text files and can be executed on any computer with a Perl installation.

ESearch-EFetch demonstrates basic search and retrieval functions.

#!/usr/local/bin/perl -w
===
#
PUBLIC DOMAIN NOTICE
National Center for Biotechnology Information
#
This software/database is a "United States Government Work" under the
terms of the United States Copyright Act. It was written as part of
the author's official duties as a United States Government employee and
thus cannot be copyrighted. This software/database is freely available
to the public for use. The National Library of Medicine and the U.S.
Government have not placed any restriction on its use or reproduction.
#
Although all reasonable efforts have been taken to ensure the accuracy
and reliability of the software and data, the NLM and the U.S.
Government do not and cannot warrant the performance or results that
may be obtained by using this software or data. The NLM and the U.S.
Government disclaim all warranties, express or implied, including
warranties of performance, merchantability or fitness for any particular
purpose.
#
Please cite the author in any work or product based on this material.
#
===
#

12 Entrez Programming Utilities Help

https://www.ncbi.nlm.nih.gov/Class/PowerTools/eutils/ebot/ebot.cgi

Author: Oleg Khovayko
#
File Description: eSearch/eFetch calling example

Subroutine to prompt user for variables in the next section

sub ask_user {
 print "$_[0] [$_[1]]: ";
 my $rc = <>;
 chomp $rc;
 if($rc eq "") { $rc = $_[1]; }
 return $rc;
}

Define library for the 'get' function used in the next section.
$utils contains route for the utilities.
$db, $query, and $report may be supplied by the user when prompted;
if not answered, default values, will be assigned as shown below.

use LWP::Simple;

my $utils = "https://www.ncbi.nlm.nih.gov/entrez/eutils";

my $db = ask_user("Database", "Pubmed");
my $query = ask_user("Query", "zanzibar");
my $report = ask_user("Report", "abstract");

$esearch cont?ins the PATH & parameters for the ESearch call
$esearch_result containts the result of the ESearch call
the results are displayed ?nd parsed into variables
$Count, $QueryKey, and $WebEnv for later use and then displayed.

my $esearch = "$utils/esearch.fcgi?" .
 "db=$db&retmax=1&usehistory=y&term=";

my $esearch_result = get($esearch . $query);

print "\nESEARCH RESULT: $esearch_result\n";

$esearch_result =~
 m|<Count>(\d+)</Count>.*<QueryKey>(\d+)</QueryKey>.*<WebEnv>(\S+)</WebEnv>|s;

my $Count = $1;
my $QueryKey = $2;
my $WebEnv = $3;

print "Count = $Count; QueryKey = $QueryKey; WebEnv = $WebEnv\n";

this area defines a loop which will display $retmax citation results from
Efetch each time the the Enter Key is pressed, after a prompt.

my $retstart;
my $retmax=3;

for($retstart = 0; $retstart < $Count; $retstart += $retmax) {

E-utilities Quick Start 13

 my $efetch = "$utils/efetch.fcgi?" .
 "rettype=$report&retmode=text&retstart=$retstart&retmax=$retmax&" .
 "db=$db&query_key=$QueryKey&WebEnv=$WebEnv";

 print "\nEF_QUERY=$efetch\n";

 my $efetch_result = get($efetch);

 print "---------\nEFETCH RESULT(".
 ($retstart + 1) . ".." . ($retstart + $retmax) . "): ".
 "[$efetch_result]\n-----PRESS ENTER!!!-------\n";
 <>;
}

EPost-ESummary demonstrates basic uploading and document summary retrieval.

#!/usr/local/bin/perl -w
===
#
PUBLIC DOMAIN NOTICE
National Center for Biotechnology Information
#
This software/database is a "United States Government Work" under the
terms of the United States Copyright Act. It was written as part of
the author's official duties as a United States Government employee and
thus cannot be copyrighted. This software/database is freely available
to the public for use. The National Library of Medicine and the U.S.
Government have not placed any restriction on its use or reproduction.
#
Although all reasonable efforts have been taken to ensure the accuracy
and reliability of the software and data, the NLM and the U.S.
Government do not and cannot warrant the performance or results that
may be obtained by using this software or data. The NLM and the U.S.
Government disclaim all warranties, express or implied, including
warranties of performance, merchantability or fitness for any particular
purpose.
#
Please cite the author in any work or product based on this material.
#
===
#
Author: Oleg Khovayko
#
File Description: ePost/eSummary calling example

my $eutils_root = "https://www.ncbi.nlm.nih.gov/entrez/eutils";
my $ePost_url = "$eutils_root/epost.fcgi";
my $eSummary_url = "$eutils_root/esummary.fcgi";

my $db_name = "PubMed";

use strict;

use LWP::UserAgent;
use LWP::Simple;
use HTTP::Request;

14 Entrez Programming Utilities Help

use HTTP::Headers;
use CGI;

Read input file into variable $file
File name - forst argument $ARGV[0]

undef $/; #for load whole file

open IF, $ARGV[0] || die "Can't open for read: $!\n";
my $file = <IF>;
close IF;
print "Loaded file: [$file]\n";

Prepare file - substitute all separators to comma

$file =~ s/\s+/,/gs;
print "Prepared file: [$file]\n";

#Create CGI param line

my $form_data = "db=$db_name&id=$file";

Create HTTP request

my $headers = new HTTP::Headers(
 Accept => "text/html, text/plain",
 Content_Type => "application/x-www-form-urlencoded"
);

my $request = new HTTP::Request("POST", $ePost_url, $headers);

$request->content($form_data);

Create the user agent object

my $ua = new LWP::UserAgent;
$ua->agent("ePost/example");

send file to ePost by HTTP

my $response = $ua->request($request);

print "Responce status message: [" . $response->message . "]\n";
print "Responce content: [" . $response->content . "]\n";

Parse response->content and extract QueryKey & WebEnv
$response->content =~
 m|<QueryKey>(\d+)</QueryKey>.*<WebEnv>(\S+)</WebEnv>|s;

my $QueryKey = $1;
my $WebEnv = $2;

print "\nEXTRACTED:\nQueryKey = $QueryKey;\nWebEnv = $WebEnv\n\n";

E-utilities Quick Start 15

Retrieve DocSum from eSummary by simple::get method and print it
#
print "eSummary result: [" .
 get("$eSummary_url?db=$db_name&query_key=$QueryKey&WebEnv=$WebEnv") .
 "]\n";

For More Information

Announcement Mailing List
NCBI posts general announcements regarding the E-utilities to the utilities-announce announcement mailing
list. This mailing list is an announcement list only; individual subscribers may not send mail to the list. Also, the
list of subscribers is private and is not shared or used in any other way except for providing announcements to
list members. The list receives about one posting per month. Please subscribe at the above link.

Getting Help
Please refer to the PubMed and Entrez help documents for more information about search queries, database
indexing, field limitations and database content.

Suggestions, comments, and questions specifically relating to the EUtility programs may be sent to
eutilities@ncbi.nlm.nih.gov.

16 Entrez Programming Utilities Help

https://www.ncbi.nlm.nih.gov/mailman/listinfo/utilities-announce/
https://www.ncbi.nlm.nih.gov/mailman/listinfo/utilities-announce/
https://www.ncbi.nlm.nih.gov/books/n/helppubmed/pubmedhelp/
https://www.ncbi.nlm.nih.gov/books/n/helpentrez/EntrezHelp/

A General Introduction to the E-utilities
Eric Sayers, PhD 1

Created: May 26, 2009; Updated: November 17, 2022.

Introduction
The Entrez Programming Utilities (E-utilities) are a set of nine server-side programs that provide a stable
interface into the Entrez query and database system at the National Center for Biotechnology Information
(NCBI). The E-utilities use a fixed URL syntax that translates a standard set of input parameters into the values
necessary for various NCBI software components to search for and retrieve the requested data. The E-utilities are
therefore the structured interface to the Entrez system, which currently includes 38 databases covering a variety
of biomedical data, including nucleotide and protein sequences, gene records, three-dimensional molecular
structures, and the biomedical literature.

To access these data, a piece of software first posts an E-utility URL to NCBI, then retrieves the results of this
posting, after which it processes the data as required. The software can thus use any computer language that can
send a URL to the E-utilities server and interpret the XML response; examples of such languages are Perl,
Python, Java, and C++. Combining E-utilities components to form customized data pipelines within these
applications is a powerful approach to data manipulation.

This chapter first describes the general function and use of the eight E-utilities, followed by basic usage
guidelines and requirements, and concludes with a discussion of how the E-utilities function within the Entrez
system.

Usage Guidelines and Requirements

Use the E-utility URL
All E-utility requests should be made to URLs beginning with the following string:

https://eutils.ncbi.nlm.nih.gov/entrez/eutils/

These URLs direct requests to servers that are used only by the E-utilities and that are optimized to give users the
best performance.

Frequency, Timing and Registration of E-utility URL Requests
In order not to overload the E-utility servers, NCBI recommends that users post no more than three URL
requests per second and limit large jobs to either weekends or between 9:00 PM and 5:00 AM Eastern time
during weekdays. Failure to comply with this policy may result in an IP address being blocked from accessing
NCBI. If NCBI blocks an IP address, service will not be restored unless the developers of the software accessing
the E-utilities register values of the tool and email parameters with NCBI. The value of tool should be a string
with no internal spaces that uniquely identifies the software producing the request. The value of email should be
a complete and valid e-mail address of the software developer and not that of a third-party end user. The value of
email will be used only to contact developers if NCBI observes requests that violate our policies, and we will
attempt such contact prior to blocking access. In addition, developers may request that the value of email be
added to the E-utility mailing list that provides announcements of software updates, known bugs and other

Author Affiliation: 1 NCBI; Email: sayers@ncbi.nlm.nih.gov.

 Corresponding author.

17

https://eutils.ncbi.nlm.nih.gov/entrez/eutils/

policy changes affecting the E-utilities. To register tool and email values, simply send an e-mail to
eutilities@ncbi.nlm.nih.gov including the desired values along with the name of either a developer or the
organization creating the software. Once NCBI establishes communication with a developer, receives values for
tool and email and validates the e-mail address in email, the block will be lifted. Once tool and email values are
registered, all subsequent E-utility requests from that software package should contain both values. Please be
aware that merely providing values for tool and email in requests is not sufficient to comply with this policy;
these values must be registered with NCBI. Requests from any IP that lack registered values for tool and email
and that violate the above usage policies may be blocked. Software developers may register values of tool and
email at any time, and are encouraged to do so.

API Keys
Since December 1, 2018, NCBI has provided API keys that offer enhanced levels of supported access to the E-
utilities. Without an API key, any site (IP address) posting more than 3 requests per second to the E-utilities will
receive an error message. By including an API key, a site can post up to 10 requests per second by default. Higher
rates are available by request (eutilities@ncbi.nlm.nih.gov). Users can obtain an API key now from the Settings
page of their NCBI account (to create an account, visit http://www.ncbi.nlm.nih.gov/account/). After creating
the key, users should include it in each E-utility request by assigning it to the api_key parameter.

Example request including an API key:
esummary.fcgi?db=pubmed&id=123456&api_key=ABCDE12345

Example error message if rates are exceeded:
{"error":"API rate limit exceeded","count":"11"}

Only one API key is allowed per NCBI account; however, a user may request a new key at any time. Such a
request will invalidate any existing API key associated with that NCBI account.

Minimizing the Number of Requests
If a task requires searching for and/or downloading a large number of records, it is much more efficient to use
the Entrez History to upload and/or retrieve these records in batches rather than using separate requests for each
record. Please refer to Application 3 in Chapter 3 for an example. Many thousands of IDs can be uploaded using
a single EPost request, and several hundred records can be downloaded using one EFetch request.

Disclaimer and Copyright Issues
If you use the E-utilities within software, NCBI's Disclaimer and Copyright notice (https://
www.ncbi.nlm.nih.gov/About/disclaimer.html) must be evident to users of your product. Please note that
abstracts in PubMed may incorporate material that may be protected by U.S. and foreign copyright laws. All
persons reproducing, redistributing, or making commercial use of this information are expected to adhere to the
terms and conditions asserted by the copyright holder. Transmission or reproduction of protected items beyond
that allowed by fair use (PDF) as defined in the copyright laws requires the written permission of the copyright
owners. NLM provides no legal advice concerning distribution of copyrighted materials. Please consult your
legal counsel. If you wish to do a large data mining project on PubMed data, you can download a local copy of
the database at https://www.nlm.nih.gov/databases/download/pubmed_medline.html.

Handling Special Characters Within URLs
When constructing URLs for the E-utilities, please use lowercase characters for all parameters except &WebEnv.
There is no required order for the URL parameters in an E-utility URL, and null values or inappropriate
parameters are generally ignored. Avoid placing spaces in the URLs, particularly in queries. If a space is required,
use a plus sign (+) instead of a space:

18 Entrez Programming Utilities Help

http://www.ncbi.nlm.nih.gov/account/
https://www.ncbi.nlm.nih.gov/About/disclaimer.html
https://www.ncbi.nlm.nih.gov/About/disclaimer.html
https://www.nlm.nih.gov/databases/download/pubmed_medline.html

Incorrect: &id=352, 25125, 234
Correct: &id=352,25125,234

Incorrect: &term=biomol mrna[properties] AND mouse[organism]
Correct: &term=biomol+mrna[properties]+AND+mouse[organism]

Other special characters, such as quotation marks (“) or the # symbol used in referring to a query key on the
History server, should be represented by their URL encodings (%22 for “; %23 for #).

Incorrect: &term=#2+AND+"gene in genomic"[properties]
Correct: &term=%232+AND+%22gene+in+genomic%22[properties]

The Nine E-utilities in Brief

EInfo (database statistics)
eutils.ncbi.nlm.nih.gov/entrez/eutils/einfo.fcgi

Provides the number of records indexed in each field of a given database, the date of the last update of the
database, and the available links from the database to other Entrez databases.

ESearch (text searches)
eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi

Responds to a text query with the list of matching UIDs in a given database (for later use in ESummary, EFetch
or ELink), along with the term translations of the query.

EPost (UID uploads)
eutils.ncbi.nlm.nih.gov/entrez/eutils/epost.fcgi

Accepts a list of UIDs from a given database, stores the set on the History Server, and responds with a query key
and web environment for the uploaded dataset.

ESummary (document summary downloads)
eutils.ncbi.nlm.nih.gov/entrez/eutils/esummary.fcgi

Responds to a list of UIDs from a given database with the corresponding document summaries.

EFetch (data record downloads)
eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi

Responds to a list of UIDs in a given database with the corresponding data records in a specified format.

ELink (Entrez links)
eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi

Responds to a list of UIDs in a given database with either a list of related UIDs (and relevancy scores) in the
same database or a list of linked UIDs in another Entrez database; checks for the existence of a specified link
from a list of one or more UIDs; creates a hyperlink to the primary LinkOut provider for a specific UID and
database, or lists LinkOut URLs and attributes for multiple UIDs.

A General Introduction to the E-utilities 19

EGQuery (global query)
eutils.ncbi.nlm.nih.gov/entrez/eutils/egquery.fcgi

Responds to a text query with the number of records matching the query in each Entrez database.

ESpell (spelling suggestions)
eutils.ncbi.nlm.nih.gov/entrez/eutils/espell.fcgi

Retrieves spelling suggestions for a text query in a given database.

ECitMatch (batch citation searching in PubMed)
eutils.ncbi.nlm.nih.gov/entrez/eutils/ecitmatch.cgi

Retrieves PubMed IDs (PMIDs) corresponding to a set of input citation strings.

Understanding the E-utilities Within Entrez

The E-utilities Access Entrez Databases
The E-utilities access the core search and retrieval engine of the Entrez system and, therefore, are only capable of
retrieving data that are already in Entrez. Although the majority of data at NCBI are in Entrez, there are several
datasets that exist outside of the Entrez system. Before beginning a project with the E-utilities, check that the
desired data can be found within an Entrez database.

The Entrez System Identifies Database Records Using UIDs
Each Entrez database refers to the data records within it by an integer ID called a UID (unique identifier).
Examples of UIDs are GI numbers for Nucleotide and Protein, PMIDs for PubMed, or MMDB-IDs for
Structure. The E-utilities use UIDs for both data input and output, and thus it is often critical, especially for
advanced data pipelines, to know how to find the UIDs associated with the desired data before beginning a
project with the E-utilities.

See Table 1 for a complete list of UIDs in Entrez.

Table 1 – Entrez Unique Identifiers (UIDs) for selected databases

Entrez Database UID common name E-utility Database Name

BioProject BioProject ID bioproject

BioSample BioSample ID biosample

Books Book ID books

Conserved Domains PSSM-ID cdd

dbGaP dbGaP ID gap

dbVar dbVar ID dbvar

Gene Gene ID gene

Genome Genome ID genome

GEO Datasets GDS ID gds

GEO Profiles GEO ID geoprofiles

HomoloGene HomoloGene ID homologene

20 Entrez Programming Utilities Help

Table 1 continued from previous page.

Entrez Database UID common name E-utility Database Name

MeSH MeSH ID mesh

NCBI C++ Toolkit Toolkit ID toolkit

NLM Catalog NLM Catalog ID nlmcatalog

Nucleotide GI number nuccore

PopSet PopSet ID popset

Probe Probe ID probe

Protein GI number protein

Protein Clusters Protein Cluster ID proteinclusters

PubChem BioAssay AID pcassay

PubChem Compound CID pccompound

PubChem Substance SID pcsubstance

PubMed PMID pubmed

PubMed Central PMCID pmc

SNP rs number snp

SRA SRA ID sra

Structure MMDB-ID structure

Taxonomy TaxID taxonomy

Accessing Sequence Records Using Accession.Version Identifiers
NCBI now uses the accession.version identifier rather that the GI number (UID) as the primary identifier for
nucleotide and protein sequence records (records in the nuccore, nucest, nucgss, popset, and protein databases).
Even so, the E-utilities continue to provide access to these records using either GI numbers or accession.version
identifiers. Those E-utilities that accept UIDs as input will also accept accession.version identifiers (for the
sequence databases listed above). Those E-utilities that output UIDs can output accession.version identifiers
instead by setting the &idtype parameter to “acc”. Finally, EFetch can retrieve any sequence record by its
accession.version identifier, including sequences that do not have GI numbers. Please see Chapter 4 for more
details about how each E-utility handles accession.version identifers.

The Entrez Core Engine: EGQuery, ESearch, and ESummary
The core of Entrez is an engine that performs two basic tasks for any Entrez database: 1) assemble a list of UIDs
that match a text query, and 2) retrieve a brief summary record called a Document Summary (DocSum) for each
UID. These two basic tasks of the Entrez engine are performed by ESearch and ESummary. ESearch returns a list
of UIDs that match a text query in a given Entrez database, and ESummary returns DocSums that match a list of
input UIDs. A text search in web Entrez is equivalent to ESearch-ESummary. EGQuery is a global version of
ESearch that searches all Entrez databases simultaneously. Because these three E-utilities perform the two core
Entrez functions, they function for all Entrez databases.

egquery.fcgi?term=query
esearch.fcgi?db=database&term=query
esummary.fcgi?db=database&id=uid1,uid2,uid3,...

A General Introduction to the E-utilities 21

Syntax and Initial Parsing of Entrez Queries
Text search strings entered into the Entrez system are converted into Entrez queries with the following format:

term1[field1] Op term2[field2] Op term3[field3] Op ...

where the terms are search terms, each limited to a particular Entrez field in square brackets, combined using
one of three Boolean operators: Op = AND, OR, or NOT. These Boolean operators must be typed in all capital
letters.

Example: human[organism] AND topoisomerase[protein name]

Entrez initially splits the query into a series of items that were originally separated by spaces in the query;
therefore it is critical that spaces separate each term and Boolean operator. If the query consists only of a list of
UID numbers (unique identifiers) or accession numbers, the Entrez system simply returns the corresponding
records and no further parsing is performed. If the query contains any Boolean operators (AND, OR, or NOT),
the query is split into the terms separated by these operators, and then each term is parsed independently. The
results of these searches are then combined according to the Boolean operators.

A full account of how to search Entrez can be found in the Entrez Help Document. Additional information is
available from Entrez Help.

Entrez Databases: EInfo, EFetch, and ELink
The NCBI Entrez system currently contains 38 databases. EInfo provides detailed information about each
database, including lists of the indexing fields in the database and the available links to other Entrez databases.

einfo.fcgi?db=database

Each Entrez database includes two primary enhancements to the raw data records: 1) software for producing a
variety of display formats appropriate to the given database, and 2) links to records in other Entrez databases
manifested as lists of associated UIDs. The display format function is performed by EFetch, which generates
formatted output for a list of input UIDs. For example, EFetch can produce abstracts from Entrez PubMed or
FASTA format from Entrez Protein. EFetch does not yet support all Entrez databases; please see the EFetch
documentation for details.

efetch.fcgi?db=database&id=uid1,uid2,uid3&rettype=report_type&retmode=
data_mode

The linking function is performed by ELink, which generates a list of UIDs in a specified Entrez database that
are linked to a set of input UIDs in either the same or another database. For example, ELink can find Entrez SNP
records linked to records in Entrez Nucleotide, or Entrez Domain records linked to records in Entrez Protein.

elink.fcgi?dbfrom=initial_databasedb=target_database&id=uid1,uid2,uid3

Using the Entrez History Server
A powerful feature of the Entrez system is that it can store retrieved sets of UIDs temporarily on the servers so
that they can be subsequently combined or provided as input for other E-utility calls. The Entrez History server
provides this service and is accessed on the Web using either the Preview/Index or History tabs on Entrez search
pages. Each of the E-utilities can also use the History server, which assigns each set of UIDs an integer label
called a query key (&query_key) and an encoded cookie string called a Web environment (&WebEnv). EPost
allows any list of UIDs to be uploaded to the History Server and returns the query key and Web environment.
ESearch can also post its output set of UIDs to the History Server, but only if the &usehistory parameter is set to
“y”. ELink also can post its output to the History server if &cmd is set to "neighbor_history". The resulting query

22 Entrez Programming Utilities Help

https://www.ncbi.nlm.nih.gov/books/n/helpentrez/EntrezHelp/
https://www.ncbi.nlm.nih.gov/books/n/helpentrez/

key and Web environment from either EPost or ESearch can then be used in place of a UID list in ESummary,
EFetch, and ELink.

In Entrez, a set of UIDs is represented on the History by three parameters:

&db = database; &query_key = query key; &WebEnv = web environment

Upload steps that generate a web environment and query key

esearch.fcgi?db=database&term=query&usehistory=y

epost.fcgi?db=database&id=uid1,uid2,uid3,...

elink.fcgi?dbfrom=source_db&db=destination_db&cmd=neighbor_history&id=
uid1,uid2,...

Download steps that use a web environment and query key

esummary.fcgi?db=database&WebEnv=webenv&query_key=key

efetch.fcgi?db=database&WebEnv=webenv&query_key=key&rettype=
report_type&retmode=data_mode

Link step that uses a web environment and query key

elink.fcgi?dbfrom=initial_databasedb=target_database&WebEnv=
webenv&query_key=key

Search step that uses a web environment and a query key in the &term parameter (preceded by #, encoded as
%23)

esearch.fcgi?db=database&term=%23key+AND+query&WebEnv=webenv&usehistory=y

Generating Multiple Data Sets on the History Server
Each web environment on the History Server can be associated with any number of query keys. This allows
different data sets to be combined with the Boolean operators AND, OR, and NOT, or with another Entrez
query. It is important to remember that for two data sets (query keys) to be combined, they must be associated
with the same web environment. By default, successive E-utility calls produce query keys that are not associated
with the same web environment, and so to overcome this, each E-utility call after the initial call must set the
&WebEnv parameter to the value of the pre-existing web environment.

Default behavior: These two URLs…

URL 1: epost.fcgi?db=database&id=uid1,uid2,uid3
URL 2: esearch.fcgi?db=database&term=query&usehistory=y

will produce two History sets associated with different web environments:

URL WebEnv query_key UIDs
1 web1 1 uid1,uid2,uid3
2 web2 1 uids matching query

Desired behavior: These two URLs…

URL 1: epost.fcgi?db=database&id=uid1,uid2,uid3
(extract web1 from the output of URL 1)
URL 2: esearch.fcgi?db=database&term=query&usehistory=y&WebEnv=web1

will produce two sets associated with the same (new) web environment:

A General Introduction to the E-utilities 23

URL WebEnv query_key UIDs
1 web2 1 uid1,uid2,uid3
2 web2 2 uids matching query

Combining E-utility Calls to Create Entrez Applications
The E-utilities are useful when used by themselves in single URLs; however, their full potential is realized when
successive E-utility URLs are combined to create a data pipeline. When used within such pipelines, the Entrez
History server simplifies complex retrieval tasks by allowing easy data transfer between successive E-utility calls.
Listed below are several examples of pipelines produced by combining E-utilities, with the arrows representing
the passing of db, WebEnv and query_key values from one E-utility to another. These and related pipelines are
discussed in detail in Chapter 3.

Basic Pipelines

Retrieving data records matching an Entrez query
ESearch → ESummary

ESearch → EFetch

Retrieving data records matching a list of UIDs
EPost → ESummary

EPost → EFetch

Finding UIDs linked to a set of records
ESearch → ELink

EPost → ELink

Limiting a set of records with an Entrez query
EPost → ESearch

ELink → ESearch

Advanced Pipelines

Retrieving data records in database B linked to records in database A
matching an Entrez query
ESearch → ELink → ESummary

ESearch → ELink → EFetch

Retrieving data records from a subset of an ID list defined by an Entrez query
EPost → ESearch → ESummary

EPost → ESearch → EFetch

Retrieving a set of data records, defined by an Entrez query, in database B
from a larger set of records linked to a list of UIDs in database A
EPost → ELink → ESearch → ESummary

24 Entrez Programming Utilities Help

EPost → ELink → ESearch → EFetch

Demonstration Programs
Please see Chapter 1 for sample Perl scripts.

For More Information
Please see Chapter 1 for getting additional information about the E-utilities.

A General Introduction to the E-utilities 25

https://www.ncbi.nlm.nih.gov/books/n/helpeutils/chapter1/#chapter1.For_More_Information_8

26 Entrez Programming Utilities Help

Sample Applications of the E-utilities
Eric Sayers, PhD 1

Created: April 24, 2009; Updated: November 1, 2017.

Introduction
This chapter presents several examples of how the E-utilities can be used to build useful applications. These
examples use Perl to create the E-utility pipelines, and assume that the LWP::Simple module is installed. This
module includes the get function that supports HTTP GET requests. One example (Application 4) uses an
HTTP POST request, and requires the LWP::UserAgent module. In Perl, scalar variable names are preceded by a
"$" symbol, and array names are preceded by a "@". In several instances, results will be stored in such variables
for use in subsequent E-utility calls. The code examples here are working programs that can be copied to a text
editor and executed directly. Equivalent HTTP requests can be constructed in many modern programming
languages; all that is required is the ability to create and post an HTTP request.

Basic Pipelines
All E-utility applications consist of a series of calls that we will refer to as a pipeline. The simplest E-utility
pipelines consist of two calls, and any arbitrary pipeline can be assembled from these basic building blocks.
Many of these pipelines conclude with either ESummary (to retrieve DocSums) or EFetch (to retrieve full
records). The comments indicate those portions of the code that are required for either call.

ESearch – ESummary/EFetch
Input: Entrez text query

ESummary Output: XML Document Summaries

EFetch Output: Formatted data records (e.g. abstracts, FASTA)

use LWP::Simple;

Download PubMed records that are indexed in MeSH for both asthma and
leukotrienes and were also published in 2009.

$db = 'pubmed';
$query = 'asthma[mesh]+AND+leukotrienes[mesh]+AND+2009[pdat]';

#assemble the esearch URL
$base = 'https://eutils.ncbi.nlm.nih.gov/entrez/eutils/';
$url = $base . "esearch.fcgi?db=$db&term=$query&usehistory=y";

#post the esearch URL
$output = get($url);

#parse WebEnv and QueryKey
$web = $1 if ($output =~ /<WebEnv>(\S+)<\/WebEnv>/);
$key = $1 if ($output =~ /<QueryKey>(\d+)<\/QueryKey>/);

Author Affiliation: 1 NCBI; Email: sayers@ncbi.nlm.nih.gov.

 Corresponding author.

27

include this code for ESearch-ESummary
#assemble the esummary URL
$url = $base . "esummary.fcgi?db=$db&query_key=$key&WebEnv=$web";

#post the esummary URL
$docsums = get($url);
print "$docsums";

include this code for ESearch-EFetch
#assemble the efetch URL
$url = $base . "efetch.fcgi?db=$db&query_key=$key&WebEnv=$web";
$url .= "&rettype=abstract&retmode=text";

#post the efetch URL
$data = get($url);
print "$data";

EPost – ESummary/EFetch
Input: List of Entrez UIDs (integer identifiers, e.g. PMID, GI, Gene ID)

ESummary Output: XML Document Summaries

EFetch Output: Formatted data records (e.g. abstracts, FASTA)

use LWP::Simple;

Download protein records corresponding to a list of GI numbers.

$db = 'protein';
$id_list = '194680922,50978626,28558982,9507199,6678417';

#assemble the epost URL
$base = 'https://eutils.ncbi.nlm.nih.gov/entrez/eutils/';
$url = $base . "epost.fcgi?db=$db&id=$id_list";

#post the epost URL
$output = get($url);

#parse WebEnv and QueryKey
$web = $1 if ($output =~ /<WebEnv>(\S+)<\/WebEnv>/);
$key = $1 if ($output =~ /<QueryKey>(\d+)<\/QueryKey>/);

include this code for EPost-ESummary
#assemble the esummary URL
$url = $base . "esummary.fcgi?db=$db&query_key=$key&WebEnv=$web";

#post the esummary URL
$docsums = get($url);
print "$docsums";

include this code for EPost-EFetch
#assemble the efetch URL
$url = $base . "efetch.fcgi?db=$db&query_key=$key&WebEnv=$web";
$url .= "&rettype=fasta&retmode=text";

#post the efetch URL
$data = get($url);
print "$data";

28 Entrez Programming Utilities Help

Note: To post a large number (more than a few hundred) UIDs in a single URL, please use the HTTP POST method
for the EPost call (see Application 4).

ELink – ESummary/Efetch
Input: List of Entrez UIDs in database A (integer identifiers, e.g. PMID, GI, Gene ID)

ESummary Output: Linked XML Document Summaries from database B

EFetch Output: Formatted data records (e.g. abstracts, FASTA) from database B

use LWP::Simple;

Download gene records linked to a set of proteins corresponding to a list
of GI numbers.

$db1 = 'protein'; # &dbfrom
$db2 = 'gene'; # &db
$linkname = 'protein_gene'; # desired link &linkname
#input UIDs in $db1 (protein GIs)
$id_list = '194680922,50978626,28558982,9507199,6678417';

#assemble the elink URL
$base = 'https://eutils.ncbi.nlm.nih.gov/entrez/eutils/';
$url = $base . "elink.fcgi?dbfrom=$db1&db=$db2&id=$id_list";
$url .= "&linkname=$linkname&cmd=neighbor_history";

#post the elink URL
$output = get($url);

#parse WebEnv and QueryKey
$web = $1 if ($output =~ /<WebEnv>(\S+)<\/WebEnv>/);
$key = $1 if ($output =~ /<QueryKey>(\d+)<\/QueryKey>/);

include this code for ELink-ESummary
#assemble the esummary URL
$url = $base . "esummary.fcgi?db=$db&query_key=$key&WebEnv=$web";

#post the esummary URL
$docsums = get($url);
print "$docsums";

include this code for ELink-EFetch
#assemble the efetch URL
$url = $base . "efetch.fcgi?db=$db2&query_key=$key&WebEnv=$web";
$url .= "&rettype=xml&retmode=xml";

#post the efetch URL
$data = get($url);
print "$data";

Notes: To submit a large number (more than a few hundred) UIDs to ELink in one URL, please use the HTTP
POST method for the Elink call (see Application 4). The &linkname parameter is used to force ELink to return only
one set of links (one &query_key) to simplify parsing. If more than one link is desired, the above code must be
altered to parse the multiple &query_key values from the ELink XML output. This code uses ELink in "batch" mode,
in that only one set of gene IDs is returned and the one-to-one correspondence between protein GIs and gene IDs is
lost. To preserve this one-to-one correspondence, please see Application 4 below.

Sample Applications of the E-utilities 29

ESearch – ELink – ESummary/EFetch
Input: Entrez text query in database A

ESummary Output: Linked XML Document Summaries from database B

EFetch Output: Formatted data records (e.g. abstracts, FASTA) from database B

use LWP::Simple;
Download protein FASTA records linked to abstracts published
in 2009 that are indexed in MeSH for both asthma and
leukotrienes.

$db1 = 'pubmed';
$db2 = 'protein';
$linkname = 'pubmed_protein';
$query = 'asthma[mesh]+AND+leukotrienes[mesh]+AND+2009[pdat]';

#assemble the esearch URL
$base = 'https://eutils.ncbi.nlm.nih.gov/entrez/eutils/';
$url = $base . "esearch.fcgi?db=$db1&term=$query&usehistory=y";
#post the esearch URL
$output = get($url);

#parse WebEnv and QueryKey
$web1 = $1 if ($output =~ /<WebEnv>(\S+)<\/WebEnv>/);
$key1 = $1 if ($output =~ /<QueryKey>(\d+)<\/QueryKey>/);

#assemble the elink URL
$base = 'https://eutils.ncbi.nlm.nih.gov/entrez/eutils/';
$url = $base . "elink.fcgi?dbfrom=$db1&db=$db2";
$url .= "&query_key=$key1&WebEnv=$web1";
$url .= "&linkname=$linkname&cmd=neighbor_history";
print "$url\n";

#post the elink URL
$output = get($url);
print "$output\n";

#parse WebEnv and QueryKey
$web2 = $1 if ($output =~ /<WebEnv>(\S+)<\/WebEnv>/);
$key2 = $1 if ($output =~ /<QueryKey>(\d+)<\/QueryKey>/);

include this code for ESearch-ELink-ESummary
#assemble the esummary URL
$url = $base . "esummary.fcgi?db=$db2&query_key=$key2&WebEnv=$web2";
#post the esummary URL
$docsums = get($url);
print "$docsums";

include this code for ESearch-ELink-EFetch
#assemble the efetch URL
$url = $base . "efetch.fcgi?db=$db2&query_key=$key2&WebEnv=$web2";
$url .= "&rettype=fasta&retmode=text";
#post the efetch URL
$data = get($url);
print "$data";

30 Entrez Programming Utilities Help

Notes: The &linkname parameter is used to force ELink to return only one set of links (one &query_key) to simplify
parsing. If more than one link is desired, the above code must be altered to parse the multiple &query_key values
from the ELink XML output. This code uses ELink in "batch" mode, in that only one set of PubMed IDs is returned
and the one-to-one correspondence between PubMed IDs and their related PubMed IDs is lost. To preserve this one-
to-one correspondence, please see Application 4 below.

EPost – ELink – ESummary/EFetch
Input: List of Entrez UIDs (integer identifiers, e.g. PMID, GI, Gene ID) in database A

ESummary Output: Linked XML Document Summaries from database B

EFetch Output: Formatted data records (e.g. abstracts, FASTA) from database B

use LWP::Simple;

Downloads gene records linked to a set of proteins corresponding
to a list of protein GI numbers.

$db1 = 'protein'; # &dbfrom
$db2 = 'gene'; # &db
$linkname = 'protein_gene';
#input UIDs in $db1 (protein GIs)
$id_list = '194680922,50978626,28558982,9507199,6678417';

#assemble the epost URL
$base = 'https://eutils.ncbi.nlm.nih.gov/entrez/eutils/';
$url = $base . "epost.fcgi?db=$db1&id=$id_list";

#post the epost URL
$output = get($url);

#parse WebEnv and QueryKey
$web1 = $1 if ($output =~ /<WebEnv>(\S+)<\/WebEnv>/);
$key1 = $1 if ($output =~ /<QueryKey>(\d+)<\/QueryKey>/);

#assemble the elink URL
$base = 'https://eutils.ncbi.nlm.nih.gov/entrez/eutils/';
$url = $base . "elink.fcgi?dbfrom=$db1&db=$db2&query_key=$key1";
$url .= "&WebEnv=$web1&linkname=$linkname&cmd=neighbor_history";

#post the elink URL
$output = get($url);

#parse WebEnv and QueryKey
$web2 = $1 if ($output =~ /<WebEnv>(\S+)<\/WebEnv>/);
$key2 = $1 if ($output =~ /<QueryKey>(\d+)<\/QueryKey>/);

include this code for ESearch-ELink-ESummary
#assemble the esummary URL
$url = $base . "esummary.fcgi?db=$db2&query_key=$key2&WebEnv=$web2";

#post the esummary URL
$docsums = get($url);
print "$docsums";

include this code for ESearch-ELink-EFetch
#assemble the efetch URL

Sample Applications of the E-utilities 31

$url = $base . "efetch.fcgi?db=$db2&query_key=$key2&WebEnv=$web2";
$url .= "&rettype=xml&retmode=xml";

#post the efetch URL
$data = get($url);
print "$data";

Notes: To post a large number (more than a few hundred) UIDs in a single URL, please use the HTTP POST
method for the EPost call (see Application 4 below). The &linkname parameter is used to force ELink to return only
one set of links (one &query_key) to simplify parsing. If more than one link is desired, the above code must be
altered to parse the multiple &query_key values from the ELink XML output. This code uses ELink in "batch" mode,
in that only one set of gene IDs is returned and the one-to-one correspondence between protein GIs and Gene IDs is
lost. To preserve this one-to-one correspondence, please see Application 4 below.

EPost – ESearch
Input: List of Entrez UIDs (integer identifiers, e.g. PMID, GI, Gene ID)

Output: History set consisting of the subset of posted UIDs that match an Entrez text query

use LWP::Simple;

Given an input set of protein GI numbers, this script creates
a history set containing the members of the input set that
correspond to human proteins.
#(Which of these proteins are from human?)

$db = 'protein';
$query = 'human[orgn]';
$id_list = '194680922,50978626,28558982,9507199,6678417';

#assemble the epost URL
$base = 'https://eutils.ncbi.nlm.nih.gov/entrez/eutils/';
$url = $base . "epost.fcgi?db=$db&id=$id_list";

#post the epost URL
$output = get($url);

#parse WebEnv and QueryKey
$web = $1 if ($output =~ /<WebEnv>(\S+)<\/WebEnv>/);
$key = $1 if ($output =~ /<QueryKey>(\d+)<\/QueryKey>/);

#assemble the esearch URL
$term = "%23$key+AND+$query";
%23 places a '#' before the query key
$url = $base . "esearch.fcgi?db=$db&term=$term";
$url .= "&WebEnv=$web&usehistory=y";

#post esearch URL
$limited = get($url);

print "$limited\n";

Output remains on the history server (&query_key, &WebEnv)
Use ESummary or EFetch as above to retrieve them

Note: To post a large number (more than a few hundred) UIDs in a single URL, please use the HTTP POST method
for the EPost call (see Application 4).

32 Entrez Programming Utilities Help

ELink – ESearch
Input: List of Entrez UIDs (integer identifiers, e.g. PMID, GI, Gene ID) in database A

Output: History set consisting of the subset of linked UIDs in database B that match an Entrez text query

use LWP::Simple;

Given an input set of protein GI numbers, this script creates a
history set containing the gene IDs linked to members of the input
set that also are on human chromosome X.
#(Which of the input proteins are encoded by a gene on human
chromosome X?)

$db1 = 'protein'; # &dbfrom
$db2 = 'gene'; # &db
$linkname = 'protein_gene'; # desired link &linkname
$query = 'human[orgn]+AND+x[chr]';
#input UIDs in $db1 (protein GIs)
$id_list = '148596974,42544182,187937179,4557377,6678417';

#assemble the elink URL
$base = 'https://eutils.ncbi.nlm.nih.gov/entrez/eutils/';
$url = $base . "elink.fcgi?dbfrom=$db1&db=$db2&id=$id_list";
$url .= "&linkname=$linkname&cmd=neighbor_history";

#post the elink URL
$output = get($url);

#parse WebEnv and QueryKey
$web = $1 if ($output =~ /<WebEnv>(\S+)<\/WebEnv>/);
$key = $1 if ($output =~ /<QueryKey>(\d+)<\/QueryKey>/);

#assemble the esearch URL
$term = "%23$key+AND+$query"; # %23 places a '#' before the query key
$url = $base . "esearch.fcgi?db=$db2&term=$term&WebEnv=$web&usehistory=y";

#post esearch URL
$limited = get($url);

print "$limited\n";

Output remains on the history server (&query_key, &WebEnv)
Use ESummary or EFetch as in previous examples to retrieve them

Note: To submit a large number (more than a few hundred) UIDs to ELink in one URL, please use the HTTP POST
method for the Elink call (see Application 4). The &linkname parameter is used to force ELink to return only one set
of links (one &query_key) to simplify parsing. If more than one link is desired, the above code must be altered to
parse the multiple &query_key values from the ELink XML output. This code uses ELink in "batch" mode, in that
only one set of gene IDs is returned and the one-to-one correspondence between protein GIs and Gene IDs is lost. To
preserve this one-to-one correspondence, please see Application 4 below.

Application 1: Converting GI numbers to accession numbers
Goal: Starting with a list of nucleotide GI numbers, prepare a set of corresponding accession numbers.

Solution: Use EFetch with &retttype=acc

Sample Applications of the E-utilities 33

Input: $gi_list – comma-delimited list of GI numbers

Output: List of accession numbers.

use LWP::Simple;
$gi_list = '24475906,224465210,50978625,9507198';

#assemble the URL
$base = 'https://eutils.ncbi.nlm.nih.gov/entrez/eutils/';
$url = $base . "efetch.fcgi?db=nucleotide&id=$gi_list&rettype=acc";

#post the URL
$output = get($url);
print "$output";

Notes: The order of the accessions in the output will be the same order as the GI numbers in $gi_list.

Application 2: Converting accession numbers to data
Goal: Starting with a list of protein accession numbers, return the sequences in FASTA format.

Solution: Create a string consisting of items separated by 'OR', where each item is an accession number followed
by '[accn]'.

Example: accn1[accn]+OR+accn2[accn]+OR+accn3[accn]+OR+…

Submit this string as a &term in ESearch, then use EFetch to retrieve the FASTA data.

Input: $acc_list – comma-delimited list of accessions

Output: FASTA data

use LWP::Simple;
$acc_list = 'NM_009417,NM_000547,NM_001003009,NM_019353';
@acc_array = split(/,/, $acc_list);

#append [accn] field to each accession
for ($i=0; $i < @acc_array; $i++) {
 $acc_array[$i] .= "[accn]";
}

#join the accessions with OR
$query = join('+OR+',@acc_array);

#assemble the esearch URL
$base = 'https://eutils.ncbi.nlm.nih.gov/entrez/eutils/';
$url = $base . "esearch.fcgi?db=nuccore&term=$query&usehistory=y";

#post the esearch URL
$output = get($url);

#parse WebEnv and QueryKey
$web = $1 if ($output =~ /<WebEnv>(\S+)<\/WebEnv>/);
$key = $1 if ($output =~ /<QueryKey>(\d+)<\/QueryKey>/);

#assemble the efetch URL
$url = $base . "efetch.fcgi?db=nuccore&query_key=$key&WebEnv=$web";
$url .= "&rettype=fasta&retmode=text";

34 Entrez Programming Utilities Help

#post the efetch URL
$fasta = get($url);
print "$fasta";

Notes: For large numbers of accessions, use HTTP POST to submit the esearch request (see Application 4), and see
Application 3 below for downloading the large set in batches.

Application 3: Retrieving large datasets
Goal: Download all chimpanzee mRNA sequences in FASTA format (>50,000 sequences).

Solution: First use ESearch to retrieve the GI numbers for these sequences and post them on the History server,
then use multiple EFetch calls to retrieve the data in batches of 500.

Input: $query – chimpanzee[orgn]+AND+biomol+mrna[prop]

Output: A file named "chimp.fna" containing FASTA data.

use LWP::Simple;
$query = 'chimpanzee[orgn]+AND+biomol+mrna[prop]';

#assemble the esearch URL
$base = 'https://eutils.ncbi.nlm.nih.gov/entrez/eutils/';
$url = $base . "esearch.fcgi?db=nucleotide&term=$query&usehistory=y";

#post the esearch URL
$output = get($url);

#parse WebEnv, QueryKey and Count (# records retrieved)
$web = $1 if ($output =~ /<WebEnv>(\S+)<\/WebEnv>/);
$key = $1 if ($output =~ /<QueryKey>(\d+)<\/QueryKey>/);
$count = $1 if ($output =~ /<Count>(\d+)<\/Count>/);

#open output file for writing
open(OUT, ">chimp.fna") || die "Can't open file!\n";

#retrieve data in batches of 500
$retmax = 500;
for ($retstart = 0; $retstart < $count; $retstart += $retmax) {
 $efetch_url = $base ."efetch.fcgi?db=nucleotide&WebEnv=$web";
 $efetch_url .= "&query_key=$key&retstart=$retstart";
 $efetch_url .= "&retmax=$retmax&rettype=fasta&retmode=text";
 $efetch_out = get($efetch_url);
 print OUT "$efetch_out";
}
close OUT;

Application 4: Finding unique sets of linked records for each
member of a large dataset
Goal: Download separately the SNP rs numbers (identifiers) for each current gene on human chromosome 20.

Solution: First use ESearch to retrieve the Gene IDs for the genes, and then assemble an ELink URL where each
Gene ID is submitted as a separate &id parameter.

Input: $query – human[orgn]+AND+20[chr]+AND+alive[prop]

Sample Applications of the E-utilities 35

Output: A file named "snp_table" containing on each line the gene id followed by a colon (":") followed by a
comma-delimited list of the linked SNP rs numbers.

use LWP::Simple;
use LWP::UserAgent;
$query = 'human[orgn]+AND+20[chr]+AND+alive[prop]';
$db1 = 'gene';
$db2 = 'snp';
$linkname = 'gene_snp';

#assemble the esearch URL
$base = 'https://eutils.ncbi.nlm.nih.gov/entrez/eutils/';
$url = $base . "esearch.fcgi?db=$db1&term=$query&usehistory=y&retmax=5000";

#post the esearch URL
$output = get($url);

#parse IDs retrieved
while ($output =~ /<Id>(\d+?)<\/Id>/sg) {
 push(@ids, $1);
}

#assemble the elink URL as an HTTP POST call
$url = $base . "elink.fcgi";

$url_params = "dbfrom=$db1&db=$db2&linkname=$linkname";
foreach $id (@ids) {
 $url_params .= "&id=$id";
}

#create HTTP user agent
$ua = new LWP::UserAgent;
$ua->agent("elink/1.0 " . $ua->agent);

#create HTTP request object
$req = new HTTP::Request POST => "$url";
$req->content_type('application/x-www-form-urlencoded');
$req->content("$url_params");

#post the HTTP request
$response = $ua->request($req);
$output = $response->content;

open (OUT, ">snp_table") || die "Can't open file!\n";

while ($output =~ /<LinkSet>(.*?)<\/LinkSet>/sg) {

 $linkset = $1;
 if ($linkset =~ /<IdList>(.*?)<\/IdList>/sg) {
 $input = $1;
 $input_id = $1 if ($input =~ /<Id>(\d+)<\/Id>/sg);
 }

 while ($linkset =~ /<Link>(.*?)<\/Link>/sg) {
 $link = $1;
 push (@output, $1) if ($link =~ /<Id>(\d+)<\/Id>/);
 }

36 Entrez Programming Utilities Help

 print OUT "$input_id:" . join(',', @output) . "\n";

}

close OUT;

Notes: This example uses an HTTP POST request for the elink call, as the number of Gene IDs is over 500. The
&retmax parameter in the ESearch call is set to 5000, as this is a reasonable limit to the number of IDs to send to
ELink in one request (if you send 5000 IDs, you are effectively performing 5000 ELink operations). If you need to
link more than 5000 records, add &retstart to the ESearch call and repeat the entire procedure for each batch of
5000 IDs, incrementing &retstart for each batch.

Demonstration Programs
Please see Chapter 1 for sample Perl scripts.

For More Information
Please see Chapter 1 for getting additional information about the E-utilities.

Sample Applications of the E-utilities 37

https://www.ncbi.nlm.nih.gov/books/n/helpeutils/chapter1/#chapter1.For_More_Information_8

38 Entrez Programming Utilities Help

The E-utilities In-Depth: Parameters, Syntax and More
Eric Sayers, PhD 1

Created: May 29, 2009; Updated: November 30, 2022.

Introduction
This chapter serves as a reference for all supported parameters for the E-utilities, along with accepted values and
usage guidelines. This information is provided for each E-utility in sections below, and parameters and/or values
specific to particular databases are discussed within each section. Most E-utilities have a set of parameters that
are required for any call, in addition to several additional optional parameters that extend the tool's functionality.
These two sets of parameters are discussed separately in each section.

General Usage Guidelines
Please see Chapter 2 for a detailed discussion of E-utility usage policy. The following two parameters should be
included in all E-utility requests.

tool
Name of application making the E-utility call. Value must be a string with no internal spaces.

email
E-mail address of the E-utility user. Value must be a string with no internal spaces, and should be a valid e-mail
address.

If you expect to post more than 3 E-utility requests per second from a single IP address, consider including the
following parameter:

api_key
Value of the API key for sites that post more than 3 requests per second. Please see Chapter 2 for a full
discussion of this policy.

E-utilities DTDs
With the exception of EFetch, the E-utilities each generate a single XML output format that conforms to a DTD
specific for that utility. Links to these DTDs are provided in the XML headers of the E-utility returns.

ESummary version 2.0 produces unique XML DocSums for each Entrez database, and as such each Entrez
database has a unique DTD for version 2.0 DocSums. Links to these DTDs are provided in the version 2.0 XML.

EFetch produces output in a variety of formats, some of which are XML. Most of these XML formats also
conform to DTDs or schema specific to the relevant Entrez database. Please follow the appropriate link below for
the PubMed DTD:

• PubMed DTD June 2018 – current PubMed DTD
• PubMed DTD January 2019 – forthcoming DTD

Author Affiliation: 1 NCBI; Email: sayers@ncbi.nlm.nih.gov.

 Corresponding author.

39

http://dtd.nlm.nih.gov/ncbi/pubmed/out/pubmed_180601.dtd
http://dtd.nlm.nih.gov/ncbi/pubmed/out/pubmed_190101.dtd

EInfo

Base URL
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/einfo.fcgi

Functions
• Provides a list of the names of all valid Entrez databases
• Provides statistics for a single database, including lists of indexing fields and available link names

Required Parameters
None. If no db parameter is provided, einfo will return a list of the names of all valid Entrez databases.

Optional Parameters

db
Target database about which to gather statistics. Value must be a valid Entrez database name.

version
Used to specify version 2.0 EInfo XML. The only supported value is ‘2.0’. When present, EInfo will return XML
that includes two new fields: <IsTruncatable> and <IsRangeable>. Fields that are truncatable allow the wildcard
character ‘*’ in terms. The wildcard character will expand to match any set of characters up to a limit of 600
unique expansions. Fields that are rangeable allow the range operator ‘:’ to be placed between a lower and upper
limit for the desired range (e.g. 2008:2010[pdat]).

retmode
Retrieval type. Determines the format of the returned output. The default value is ‘xml’ for EInfo XML, but ‘json’
is also supported to return output in JSON format.

Examples
Return a list of all Entrez database names:

https://eutils.ncbi.nlm.nih.gov/entrez/eutils/einfo.fcgi

Return version 2.0 statistics for Entrez Protein:

https://eutils.ncbi.nlm.nih.gov/entrez/eutils/einfo.fcgi?db=protein&version=2.0

ESearch

Base URL
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi

Functions
• Provides a list of UIDs matching a text query
• Posts the results of a search on the History server
• Downloads all UIDs from a dataset stored on the History server

40 Entrez Programming Utilities Help

https://www.ncbi.nlm.nih.gov/books/n/helpeutils/chapter2/#chapter2.chapter2_table1
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/einfo.fcgi
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/einfo.fcgi?db=protein&version=2.0

• Combines or limits UID datasets stored on the History server
• Sorts sets of UIDs

API users should be aware that some NCBI products contain search tools that generate content from searches on
the web interface that are not available to ESearch. For example, the PubMed web interface
(pubmed.ncbi.nlm.nih.gov) contains citation matching and spelling correction tools that are only available
through that interface. Please see ECitMatch and ESpell below for API equivalents.

Required Parameters

db
Database to search. Value must be a valid Entrez database name (default = pubmed).

term
Entrez text query. All special characters must be URL encoded. Spaces may be replaced by '+' signs. For very
long queries (more than several hundred characters long), consider using an HTTP POST call. See the PubMed
or Entrez help for information about search field descriptions and tags. Search fields and tags are database
specific.

esearch.fcgi?db=pubmed&term=asthma

PubMed also offers “proximity searching” for multiple terms appearing in any order within a specified number
of words from one another in the [Title] or [Title/Abstract] fields.

esearch.fcgi?db=pubmed&term=”asthma treatment”[Title:~3]

Optional Parameters – History Server

usehistory
When usehistory is set to 'y', ESearch will post the UIDs resulting from the search operation onto the History
server so that they can be used directly in a subsequent E-utility call. Also, usehistory must be set to 'y' for
ESearch to interpret query key values included in term or to accept a WebEnv as input.

WebEnv
Web environment string returned from a previous ESearch, EPost or ELink call. When provided, ESearch will
post the results of the search operation to this pre-existing WebEnv, thereby appending the results to the existing
environment. In addition, providing WebEnv allows query keys to be used in term so that previous search sets
can be combined or limited. As described above, if WebEnv is used, usehistory must be set to 'y'.

esearch.fcgi?db=pubmed&term=asthma&WebEnv=<webenv string>&usehistory=y

query_key
Integer query key returned by a previous ESearch, EPost or ELink call. When provided, ESearch will find the
intersection of the set specified by query_key and the set retrieved by the query in term (i.e. joins the two with
AND). For query_key to function, WebEnv must be assigned an existing WebEnv string and usehistory must be
set to 'y'.

Values for query keys may also be provided in term if they are preceeded by a '#' (%23 in the URL). While only
one query_key parameter can be provided to ESearch, any number of query keys can be combined in term.
Also, if query keys are provided in term, they can be combined with OR or NOT in addition to AND.

The E-utilities In-Depth: Parameters, Syntax and More 41

https://www.ncbi.nlm.nih.gov/books/n/helpeutils/chapter2/#chapter2.chapter2_table1
https://pubmed.ncbi.nlm.nih.gov/help/
https://www.ncbi.nlm.nih.gov/books/n/helpentrez/EntrezHelp/
https://pubmed.ncbi.nlm.nih.gov/help/#proximity-searching

The following two URLs are functionally equivalent:

esearch.fcgi?db=pubmed&term=asthma&query_key=1&WebEnv=
<webenv string>&usehistory=y

esearch.fcgi?db=pubmed&term=%231+AND+asthma&WebEnv=
<webenv string>&usehistory=y

Optional Parameters – Retrieval

retstart
Sequential index of the first UID in the retrieved set to be shown in the XML output (default=0, corresponding
to the first record of the entire set). This parameter can be used in conjunction with retmax to download an
arbitrary subset of UIDs retrieved from a search.

retmax
Total number of UIDs from the retrieved set to be shown in the XML output (default=20). By default, ESearch
only includes the first 20 UIDs retrieved in the XML output. If usehistory is set to 'y', the remainder of the
retrieved set will be stored on the History server; otherwise these UIDs are lost. Increasing retmax allows more
of the retrieved UIDs to be included in the XML output, up to a maximum of 10,000 records.

To retrieve more than 10,000 UIDs from databases other than PubMed, submit multiple esearch requests while
incrementing the value of retstart (see Application 3). For PubMed, ESearch can only retrieve the first 10,000
records matching the query. To obtain more than 10,000 PubMed records, consider using <EDirect> that
contains additional logic to batch PubMed search results automatically so that an arbitrary number can be
retrieved.

rettype
Retrieval type. There are two allowed values for ESearch: 'uilist' (default), which displays the standard XML
output, and 'count', which displays only the <Count> tag.

retmode
Retrieval type. Determines the format of the returned output. The default value is ‘xml’ for ESearch XML, but
‘json’ is also supported to return output in JSON format.

sort
Specifies the method used to sort UIDs in the ESearch output. The available values vary by database (db) and
may be found in the Display Settings menu on an Entrez search results page. If usehistory is set to ‘y’, the UIDs
are loaded onto the History Server in the specified sort order and will be retrieved in that order by ESummary or
EFetch. Example values are ‘relevance’ and ‘name’ for Gene. Users should be aware that the default value of sort
varies from one database to another, and that the default value used by ESearch for a given database may differ
from that used on NCBI web search pages.

Values of sort for PubMed are as follows:

• pub_date – descending sort by publication date
• Author – ascending sort by first author
• JournalName – ascending sort by journal name
• relevance – default sort order, (“Best Match”) on web PubMed

42 Entrez Programming Utilities Help

field
Search field. If used, the entire search term will be limited to the specified Entrez field. The following two URLs
are equivalent:

esearch.fcgi?db=pubmed&term=asthma&field=title

esearch.fcgi?db=pubmed&term=asthma[title]

idtype
Specifies the type of identifier to return for sequence databases (nuccore, popset, protein). By default, ESearch
returns GI numbers in its output. If idtype is set to ‘acc’, ESearch will return accession.version identifiers rather
than GI numbers.

Optional Parameters – Dates

datetype
Type of date used to limit a search. The allowed values vary between Entrez databases, but common values are
'mdat' (modification date), 'pdat' (publication date) and 'edat' (Entrez date). Generally an Entrez database will
have only two allowed values for datetype.

reldate
When reldate is set to an integer n, the search returns only those items that have a date specified by datetype
within the last n days.

mindate, maxdate
Date range used to limit a search result by the date specified by datetype. These two parameters (mindate,
maxdate) must be used together to specify an arbitrary date range. The general date format is YYYY/MM/DD,
and these variants are also allowed: YYYY, YYYY/MM.

Examples
Search in PubMed with the term cancer for abstracts that have an Entrez date within the last 60 days; retrieve the
first 100 PMIDs and translations; post the results on the History server and return a WebEnv and query_key:

https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?
db=pubmed&term=cancer&reldate=60&datetype=edat&retmax=100&usehistory=y

Search in PubMed for the journal PNAS, Volume 97, and retrieve six PMIDs starting with the seventh PMID in
the list:

https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?db=pubmed&term=PNAS[ta]
+AND+97[vi]&retstart=6&retmax=6&tool=biomed3

Search in the NLM Catalog for journals matching the term obstetrics:

https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?
db=nlmcatalog&term=obstetrics+AND+ncbijournals[filter]

Search PubMed Central for free full text articles containing the query stem cells:

https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?
db=pmc&term=stem+cells+AND+free+fulltext[filter]

The E-utilities In-Depth: Parameters, Syntax and More 43

https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?db=pubmed&term=cancer&reldate=60&datetype=edat&retmax=100&usehistory=y
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?db=pubmed&term=cancer&reldate=60&datetype=edat&retmax=100&usehistory=y
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?db=pubmed&term=PNAS%5Bta%5D+AND+97%5Bvi%5D&retstart=6&retmax=6&tool=biomed3
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?db=pubmed&term=PNAS%5Bta%5D+AND+97%5Bvi%5D&retstart=6&retmax=6&tool=biomed3
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?db=nlmcatalog&term=obstetrics+AND+ncbijournals%5bfilter%5d
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?db=nlmcatalog&term=obstetrics+AND+ncbijournals%5bfilter%5d
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?db=pmc&term=stem+cells+AND+free+fulltext%5bfilter%5d
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?db=pmc&term=stem+cells+AND+free+fulltext%5bfilter%5d

Search in Nucleotide for all tRNAs:

https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?db=nucleotide&term=biomol+trna[prop]

Search in Protein for a molecular weight range:

https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?
db=protein&term=70000:90000[molecular+weight]

EPost

Base URL
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/epost.fcgi

Functions
• Uploads a list of UIDs to the Entrez History server
• Appends a list of UIDs to an existing set of UID lists attached to a Web Environment

Required Parameters

db
Database containing the UIDs in the input list. The value must be a valid Entrez database name (default =
pubmed).

id
UID list. Either a single UID or a comma-delimited list of UIDs may be provided. All of the UIDs must be from
the database specified by db. For PubMed, no more than 10,000 UIDs can be included in a single URL request.
For other databases there is no set maximum for the number of UIDs that can be passed to epost, but if more
than about 200 UIDs are to be posted, the request should be made using the HTTP POST method.

For sequence databases (nuccore, popset, protein), the UID list may be a mixed list of GI numbers and
accession.version identifiers. Note: When using accession.version identifiers, there is a conversion step that takes
place that causes large lists of identifiers to time out, even when using POST. Therefore, we recommend batching
these types of requests in sizes of about 500 UIDs or less, to avoid retrieving only a partial amount of records
from your original POST input list.

epost.fcgi?db=pubmed&id=19393038,30242208,29453458
epost.fcgi?db=protein&id=15718680,NP_001098858.1,119703751

Optional Parameter

WebEnv
Web Environment. If provided, this parameter specifies the Web Environment that will receive the UID list sent
by post. EPost will create a new query key associated with that Web Environment. Usually this WebEnv value is
obtained from the output of a previous ESearch, EPost or ELink call. If no WebEnv parameter is provided, EPost
will create a new Web Environment and post the UID list to query_key 1.

epost.fcgi?db=protein&id=15718680,157427902,119703751&WebEnv=
<webenv string>

44 Entrez Programming Utilities Help

https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?db=nucleotide&term=biomol+trna%5bprop%5d%20
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?db=protein&term=70000:90000%5bmolecular+weight%5d
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?db=protein&term=70000:90000%5bmolecular+weight%5d
https://www.ncbi.nlm.nih.gov/books/n/helpeutils/chapter2/#chapter2.chapter2_table1

Example
Post records to PubMed:

https://eutils.ncbi.nlm.nih.gov/entrez/eutils/epost.fcgi?db=pubmed&id=11237011,12466850

ESummary

Base URL
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esummary.fcgi

Functions
• Returns document summaries (DocSums) for a list of input UIDs
• Returns DocSums for a set of UIDs stored on the Entrez History server

Required Parameter

db
Database from which to retrieve DocSums. The value must be a valid Entrez database name (default = pubmed).

Required Parameter – Used only when input is from a UID list

id
UID list. Either a single UID or a comma-delimited list of UIDs may be provided. All of the UIDs must be from
the database specified by db. There is no set maximum for the number of UIDs that can be passed to ESummary,
but if more than about 200 UIDs are to be provided, the request should be made using the HTTP POST method.

For sequence databases (nuccore, popset, protein), the UID list may be a mixed list of GI numbers and
accession.version identifiers.

esummary.fcgi?db=pubmed&id=19393038,30242208,29453458
esummary.fcgi?db=protein&id=15718680,NP_001098858.1,119703751

Required Parameters – Used only when input is from the Entrez History
server

query_key
Query key. This integer specifies which of the UID lists attached to the given Web Environment will be used as
input to ESummary. Query keys are obtained from the output of previous ESearch, EPost or ELink calls. The
query_key parameter must be used in conjunction with WebEnv.

WebEnv
Web Environment. This parameter specifies the Web Environment that contains the UID list to be provided as
input to ESummary. Usually this WebEnv value is obtained from the output of a previous ESearch, EPost or
ELink call. The WebEnv parameter must be used in conjunction with query_key.

esummary.fcgi?db=protein&query_key=<key>&WebEnv=<webenv string>

The E-utilities In-Depth: Parameters, Syntax and More 45

https://eutils.ncbi.nlm.nih.gov/entrez/eutils/epost.fcgi?db=pubmed&id=11237011,12466850
https://www.ncbi.nlm.nih.gov/books/n/helpeutils/chapter2/#chapter2.chapter2_table1

Optional Parameters – Retrieval

retstart
Sequential index of the first DocSum to be retrieved (default=1, corresponding to the first record of the entire
set). This parameter can be used in conjunction with retmax to download an arbitrary subset of DocSums from
the input set.

retmax
Total number of DocSums from the input set to be retrieved, up to a maximum of 10,000. If the total set is larger
than this maximum, the value of retstart can be iterated while holding retmax constant, thereby downloading
the entire set in batches of size retmax.

retmode
Retrieval type. Determines the format of the returned output. The default value is ‘xml’ for ESummary XML, but
‘json’ is also supported to return output in JSON format.

version
Used to specify version 2.0 ESummary XML. The only supported value is ‘2.0’. When present, ESummary will
return version 2.0 DocSum XML that is unique to each Entrez database and that often contains more data than
the default DocSum XML.

Examples
PubMed:

https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esummary.fcgi?db=pubmed&id=11850928,11482001

PubMed, version 2.0 XML:

https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esummary.fcgi?
db=pubmed&id=11850928,11482001&version=2.0

Protein:

https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esummary.fcgi?db=protein&id=28800982,28628843

Nucleotide:

https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esummary.fcgi?db=nucleotide&id=28864546,28800981

Structure:

https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esummary.fcgi?db=structure&id=19923,12120

Taxonomy:

https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esummary.fcgi?db=taxonomy&id=9913,30521

UniSTS:

https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esummary.fcgi?db=unists&id=254085,254086

46 Entrez Programming Utilities Help

https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esummary.fcgi?db=pubmed&id=11850928,11482001
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esummary.fcgi?db=pubmed&id=11850928,11482001&version=2.0
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esummary.fcgi?db=pubmed&id=11850928,11482001&version=2.0
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esummary.fcgi?db=protein&id=28800982,28628843
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esummary.fcgi?db=nucleotide&id=28864546,28800981
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esummary.fcgi?db=structure&id=19923,12120
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esummary.fcgi?db=taxonomy&id=9913,30521
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esummary.fcgi?db=unists&id=254085,254086

EFetch

Base URL
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi

Functions
• Returns formatted data records for a list of input UIDs
• Returns formatted data records for a set of UIDs stored on the Entrez History server

Required Parameters

db
Database from which to retrieve records. The value must be a valid Entrez database name (default = pubmed).
Currently EFetch does not support all Entrez databases. Please see Table 1 in Chapter 2 for a list of available
databases.

Required Parameter – Used only when input is from a UID list

id
UID list. Either a single UID or a comma-delimited list of UIDs may be provided. All of the UIDs must be from
the database specified by db. There is no set maximum for the number of UIDs that can be passed to EFetch, but
if more than about 200 UIDs are to be provided, the request should be made using the HTTP POST method.

For sequence databases (nuccore, popset, protein), the UID list may be a mixed list of GI numbers and
accession.version identifiers.

efetch.fcgi?db=pubmed&id=19393038,30242208,29453458
efetch.fcgi?db=protein&id=15718680,NP_001098858.1,119703751

Special note for sequence databases.

NCBI is no longer assigning GI numbers to a growing number of new sequence records. As such, these records
are not indexed in Entrez, and so cannot be retrieved using ESearch or ESummary, and have no Entrez links
accessible by ELink. EFetch can retrieve these records by including their accession.version identifier in the id
parameter.

Required Parameters – Used only when input is from the Entrez History
server

query_key
Query key. This integer specifies which of the UID lists attached to the given Web Environment will be used as
input to EFetch. Query keys are obtained from the output of previous ESearch, EPost or ELInk calls. The
query_key parameter must be used in conjunction with WebEnv.

WebEnv
Web Environment. This parameter specifies the Web Environment that contains the UID list to be provided as
input to EFetch. Usually this WebEnv value is obtained from the output of a previous ESearch, EPost or ELink
call. The WebEnv parameter must be used in conjunction with query_key.

The E-utilities In-Depth: Parameters, Syntax and More 47

https://www.ncbi.nlm.nih.gov/books/n/helpeutils/chapter2/#chapter2.chapter2_table1

efetch.fcgi?db=protein&query_key=<key>&WebEnv=<webenv string>

Optional Parameters – Retrieval

retmode
Retrieval mode. This parameter specifies the data format of the records returned, such as plain text, HMTL or
XML. See Table 1 for a full list of allowed values for each database.

Table 1 – Valid values of &retmode and &rettype for EFetch (null = empty string)

Record Type &rettype &retmode

All Databases

Document summary docsum xml, default

List of UIDs in XML uilist xml

List of UIDs in plain text uilist text

db = bioproject

Full record XML xml, default xml, default

db = biosample

Full record XML full, default xml, default

Full record text full, default text

db = gds

Summary summary, default text, default

db = gene

text ASN.1 null asn.1, default

XML null xml

Gene table gene_table text

db = homologene

48 Entrez Programming Utilities Help

Table 1 continued from previous page.

text ASN.1 null asn.1, default

XML null xml

Alignment scores alignmentscores text

FASTA fasta text

HomoloGene homologene text

db = mesh

Full record full, default text, default

db = nlmcatalog

Full record null text, default

XML null xml

db = nuccore, protein or popset

text ASN.1 null text, default

binary ASN.1 null asn.1

Full record in XML native xml

Accession number(s) acc text

FASTA fasta text

TinySeq XML fasta xml

SeqID string seqid text

Additional options for db = nuccore or popset

GenBank flat file gb text

The E-utilities In-Depth: Parameters, Syntax and More 49

Table 1 continued from previous page.

GBSeq XML gb xml

INSDSeq XML gbc xml

Additional option for db = nuccore and protein

Feature table ft text

Additional option for db = nuccore

GenBank flat file with full sequence (contigs) gbwithparts text

CDS nucleotide FASTA fasta_cds_na text

CDS protein FASTA fasta_cds_aa text

Additional options for db = protein

GenPept flat file gp text

GBSeq XML gp xml

INSDSeq XML gpc xml

Identical Protein XML ipg xml

db = pmc

XML null xml, default

MEDLINE medline text

db = pubmed

XML null xml, default

MEDLINE medline text

PMID list uilist text

50 Entrez Programming Utilities Help

Table 1 continued from previous page.

Abstract abstract text

db = sequences

text ASN.1 null text, default

Accession number(s) acc text

FASTA fasta text

SeqID string seqid text

db = snp

text ASN.1 null asn.1, default

XML null xml

Flat file flt text

FASTA fasta text

RS Cluster report rsr text

SS Exemplar list ssexemplar text

Chromosome report chr text

Summary docset text

UID list uilist text or xml

db = sra

XML full, default xml, default

db = taxonomy

XML null xml, default

The E-utilities In-Depth: Parameters, Syntax and More 51

Table 1 continued from previous page.

TaxID list uilist text or xml

db = clinvar

ClinVar Set clinvarset xml, default

UID list uilist text or xml

db = gtr

GTR Test Report gtracc xml, default

rettype
Retrieval type. This parameter specifies the record view returned, such as Abstract or MEDLINE from PubMed,
or GenPept or FASTA from protein. Please see Table 1 for a full list of allowed values for each database.

retstart
Sequential index of the first record to be retrieved (default=0, corresponding to the first record of the entire set).
This parameter can be used in conjunction with retmax to download an arbitrary subset of records from the
input set.

retmax
Total number of records from the input set to be retrieved, up to a maximum of 10,000. Optionally, for a large set
the value of retstart can be iterated while holding retmax constant, thereby downloading the entire set in
batches of size retmax.

Optional Parameters – Sequence Databases

strand
Strand of DNA to retrieve. Available values are "1" for the plus strand and "2" for the minus strand.

seq_start
First sequence base to retrieve. The value should be the integer coordinate of the first desired base, with "1"
representing the first base of the seqence.

seq_stop
Last sequence base to retrieve. The value should be the integer coordinate of the last desired base, with "1"
representing the first base of the seqence.

complexity
Data content to return. Many sequence records are part of a larger data structure or "blob", and the complexity
parameter determines how much of that blob to return. For example, an mRNA may be stored together with its
protein product. The available values are as follows:

52 Entrez Programming Utilities Help

Value of complexity Data returned for each requested GI

0 entire blob

1 bioseq

2 minimal bioseq-set

3 minimal nuc-prot

4 minimal pub-set

Examples
PubMed

Fetch PMIDs 17284678 and 9997 as text abstracts:

https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?
db=pubmed&id=17284678,9997&retmode=text&rettype=abstract

Fetch PMIDs in XML:

https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?
db=pubmed&id=11748933,11700088&retmode=xml

PubMed Central

Fetch XML for PubMed Central ID 212403:

https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pmc&id=212403

Nucleotide/Nuccore

Fetch the first 100 bases of the plus strand of GI 21614549 in FASTA format:

https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?
db=nuccore&id=21614549&strand=1&seq_start=1&seq_stop=100&rettype=fasta&retmode=text

Fetch the first 100 bases of the minus strand of GI 21614549 in FASTA format:

https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?
db=nuccore&id=21614549&strand=2&seq_start=1&seq_stop=100&rettype=fasta&retmode=text

Fetch the nuc-prot object for GI 21614549:

https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=nuccore&id=21614549&complexity=3

Fetch the full ASN.1 record for GI 5:

https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=nucleotide&id=5

Fetch FASTA for GI 5:

https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=nucleotide&id=5&rettype=fasta

The E-utilities In-Depth: Parameters, Syntax and More 53

https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pubmed&id=17284678,9997&retmode=text&rettype=abstract
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pubmed&id=17284678,9997&retmode=text&rettype=abstract
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pubmed&id=11748933,11700088&retmode=xml
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pubmed&id=11748933,11700088&retmode=xml
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pmc&id=212403
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=nuccore&id=21614549&strand=1&seq_start=1&seq_stop=100&rettype=fasta&retmode=text
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=nuccore&id=21614549&strand=1&seq_start=1&seq_stop=100&rettype=fasta&retmode=text
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=nuccore&id=21614549&strand=2&seq_start=1&seq_stop=100&rettype=fasta&retmode=text
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=nuccore&id=21614549&strand=2&seq_start=1&seq_stop=100&rettype=fasta&retmode=text
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=nuccore&id=21614549&complexity=3
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=nucleotide&id=5
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=nucleotide&id=5&rettype=fasta

Fetch the GenBank flat file for GI 5:

https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=nucleotide&id=5&rettype=gb

Fetch GBSeqXML for GI 5:

https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=nucleotide&id=5&rettype=gb&retmode=xml

Fetch TinySeqXML for GI 5:

https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=nucleotide&id=5&rettype=fasta&retmode=xml

Popset

Fetch the GenPept flat file for Popset ID 12829836:

https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=popset&id=12829836&rettype=gp

Protein

Fetch the GenPept flat file for GI 8:

https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=protein&id=8&rettype=gp

Fetch GBSeqXML for GI 8:

https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=protein&id=8&rettype=gp&retmode=xml

Sequences

Fetch FASTA for a transcript and its protein product (GIs 312836839 and 34577063)

https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?
db=sequences&id=312836839,34577063&rettype=fasta&retmode=text

Gene

Fetch full XML record for Gene ID 2:

https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=gene&id=2&retmode=xml

ELink

Base URL
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi

Functions
• Returns UIDs linked to an input set of UIDs in either the same or a different Entrez database
• Returns UIDs linked to other UIDs in the same Entrez database that match an Entrez query
• Checks for the existence of Entrez links for a set of UIDs within the same database
• Lists the available links for a UID
• Lists LinkOut URLs and attributes for a set of UIDs
• Lists hyperlinks to primary LinkOut providers for a set of UIDs
• Creates hyperlinks to the primary LinkOut provider for a single UID

54 Entrez Programming Utilities Help

https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=nucleotide&id=5&rettype=gb
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=nucleotide&id=5&rettype=gb&retmode=xml
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=nucleotide&id=5&rettype=fasta&retmode=xml
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=popset&id=12829836&rettype=gp
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=protein&id=8&rettype=gp
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=protein&id=8&rettype=gp&retmode=xml
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=sequences&id=312836839,34577063&rettype=fasta&retmode=text
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=sequences&id=312836839,34577063&rettype=fasta&retmode=text
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=gene&id=2&retmode=xml

Required Parameters

db
Database from which to retrieve UIDs. The value must be a valid Entrez database name (default = pubmed). This
is the destination database for the link operation.

dbfrom
Database containing the input UIDs. The value must be a valid Entrez database name (default = pubmed). This
is the origin database of the link operation. If db and dbfrom are set to the same database value, then ELink will
return computational neighbors within that database. Please see the full list of Entrez links for available
computational neighbors. Computational neighbors have linknames that begin with dbname_dbname
(examples: protein_protein, pcassay_pcassay_activityneighbor).

cmd
ELink command mode. The command mode specified which function ELink will perform. Some optional
parameters only function for certain values of &cmd (see below).

cmd=neighbor (default)

ELink returns a set of UIDs in db linked to the input UIDs in dbfrom.

Example: Link from protein to gene

https://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=protein&db=gene&id=15718680,157427902

cmd=neighbor_score

ELink returns a set of UIDs within the same database as the input UIDs along with computed similarity scores.

Example: Find related articles to PMID 20210808

https://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?
dbfrom=pubmed&db=pubmed&id=20210808&cmd=neighbor_score

cmd=neighbor_history

ELink posts the output UIDs to the Entrez History server and returns a query_key and WebEnv corresponding
to the location of the output set.

Example: Link from protein to gene and post the results on the Entrez History

https://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?
dbfrom=protein&db=gene&id=15718680,157427902&cmd=neighbor_history

cmd=acheck

ELink lists all links available for a set of UIDs.

Example: List all possible links from two protein GIs

https://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?
dbfrom=protein&id=15718680,157427902&cmd=acheck

Example: List all possible links from two protein GIs to PubMed

The E-utilities In-Depth: Parameters, Syntax and More 55

https://www.ncbi.nlm.nih.gov/books/n/helpeutils/chapter2/#chapter2.chapter2_table1
https://www.ncbi.nlm.nih.gov/books/n/helpeutils/chapter2/#chapter2.chapter2_table1
https://eutils.ncbi.nlm.nih.gov/entrez/query/static/entrezlinks.html
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=protein&db=gene&id=15718680,157427902
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&db=pubmed&id=20210808&cmd=neighbor_score
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&db=pubmed&id=20210808&cmd=neighbor_score
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=protein&db=gene&id=15718680,157427902&cmd=neighbor_history
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=protein&db=gene&id=15718680,157427902&cmd=neighbor_history
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=protein&id=15718680,157427902&cmd=acheck
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=protein&id=15718680,157427902&cmd=acheck

https://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?
dbfrom=protein&db=pubmed&id=15718680,157427902&cmd=acheck

cmd=ncheck

ELink checks for the existence of links within the same database for a set of UIDs. These links are equivalent to
setting db and dbfrom to the same value.

Example: Check whether two nuccore sequences have "related sequences" links.

https://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?
dbfrom=nuccore&id=21614549,219152114&cmd=ncheck

cmd=lcheck

Elink checks for the existence of external links (LinkOuts) for a set of UIDs.

Example: Check whether two protein sequences have any LinkOut providers.

https://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?
dbfrom=protein&id=15718680,157427902&cmd=lcheck

cmd=llinks

For each input UID, ELink lists the URLs and attributes for the LinkOut providers that are not libraries.

Example: List the LinkOut URLs for non-library providers for two pubmed abstracts.

https://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?
dbfrom=pubmed&id=19880848,19822630&cmd=llinks

cmd=llinkslib

For each input UID, ELink lists the URLs and attributes for all LinkOut providers including libraries.

Example: List all LinkOut URLs for two PubMed abstracts.

https://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?
dbfrom=pubmed&id=19880848,19822630&cmd=llinkslib

cmd=prlinks

ELink lists the primary LinkOut provider for each input UID, or links directly to the LinkOut provider's web site
for a single UID if retmode is set to ref.

Example: Find links to full text providers for two PubMed abstracts.

https://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?
dbfrom=pubmed&id=19880848,19822630&cmd=prlinks

Example: Link directly to the full text for a PubMed abstract at the provider's web site.

https://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?
dbfrom=pubmed&id=19880848&cmd=prlinks&retmode=ref

56 Entrez Programming Utilities Help

https://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=protein&db=pubmed&id=15718680,157427902&cmd=acheck
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=protein&db=pubmed&id=15718680,157427902&cmd=acheck
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=nuccore&id=21614549,219152114&cmd=ncheck
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=nuccore&id=21614549,219152114&cmd=ncheck
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=protein&id=15718680,157427902&cmd=lcheck
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=protein&id=15718680,157427902&cmd=lcheck
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=19880848,19822630&cmd=llinks
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=19880848,19822630&cmd=llinks
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=19880848,19822630&cmd=llinkslib
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=19880848,19822630&cmd=llinkslib
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=19880848,19822630&cmd=prlinks
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=19880848,19822630&cmd=prlinks
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=19880848&cmd=prlinks&retmode=ref
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=19880848&cmd=prlinks&retmode=ref

Required Parameter – Used only when input is from a UID list

id
UID list. Either a single UID or a comma-delimited list of UIDs may be provided. All of the UIDs must be from
the database specified by dbfrom. There is no set maximum for the number of UIDs that can be passed to ELink,
but if more than about 200 UIDs are to be provided, the request should be made using the HTTP POST method.

Link from protein to gene.

https://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?
dbfrom=protein&db=gene&id=15718680,157427902,119703751

Find related sequences (link from nuccore to nuccore).

https://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=nuccore&db=nuccore&id=34577062

If more than one id parameter is provided, ELink will perform a separate link operation for the set of UIDs
specified by each id parameter. This effectively accomplishes "one-to-one" links and preserves the connection
between the input and output UIDs.

Find one-to-one links from protein to gene.

https://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?
dbfrom=protein&db=gene&id=15718680&id=157427902&id=119703751

For sequence databases (nuccore, popset, protein), the UID list may be a mixed list of GI numbers and
accession.version identifiers.

Find one-to-one links from protein to gene.

https://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?
dbfrom=protein&db=gene&id=15718680&id=NP_001098858.1&id=119703751

Required Parameters – Used only when input is from the Entrez History
server

query_key
Query key. This integer specifies which of the UID lists attached to the given Web Environment will be used as
input to ELink. Query keys are obtained from the output of previous ESearch, EPost or ELInk calls. The
query_key parameter must be used in conjunction with WebEnv.

WebEnv
Web Environment. This parameter specifies the Web Environment that contains the UID list to be provided as
input to ELink. Usually this WebEnv value is obtained from the output of a previous ESearch, EPost or ELink
call. The WebEnv parameter must be used in conjunction with query_key.

Link from protein to gene:
elink.fcgi?dbfrom=protein&db=gene&query_key=<key>&WebEnv=<webenv string>

Find related sequences (link from protein to protein):
elink.fcgi?dbfrom=protein&db=protein&query_key=<key>&WebEnv=
<webenv string>

The E-utilities In-Depth: Parameters, Syntax and More 57

https://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=protein&db=gene&id=15718680,157427902,119703751
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=protein&db=gene&id=15718680,157427902,119703751
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=nuccore&db=nuccore&id=34577062
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=protein&db=gene&id=15718680&id=157427902&id=119703751
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=protein&db=gene&id=15718680&id=157427902&id=119703751
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=protein&db=gene&id=15718680&id=NP_001098858.1&id=119703751
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=protein&db=gene&id=15718680&id=NP_001098858.1&id=119703751

Optional Parameter – Retrieval

retmode
Retrieval type. Determines the format of the returned output. The default value is ‘xml’ for ELink XML, but ‘json’
is also supported to return output in JSON format.

idtype
Specifies the type of identifier to return for sequence databases (nuccore, popset, protein). By default, ELink
returns GI numbers in its output. If idtype is set to ‘acc’, ELink will return accession.version identifiers rather
than GI numbers.

Optional Parameters – Limiting the Output Set of Links

linkname
Name of the Entrez link to retrieve. Every link in Entrez is given a name of the form

dbfrom_db_subset.

The values of subset vary depending on the values of dbfrom and db. Many dbfrom/db combinations have no
subset values. See the list of Entrez links for a listing of all available linknames. When linkname is used, only the
links with that name will be retrieved.

The linkname parameter only functions when cmd is set to neighbor or neighbor_history.

Find all links from gene to snp.

https://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=gene&db=snp&id=93986

Find snps with genotype data linked to genes.

https://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?
dbfrom=gene&db=snp&id=93986&linkname=gene_snp_genegenotype

term
Entrez query used to limit the output set of linked UIDs. The query in the term parameter will be applied after
the link operation, and only those UIDs matching the query will be returned by ELink. The term parameter only
functions when db and dbfrom are set to the same database value.

Find all related articles for a PMID.

https://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&db=pubmed&id=19879512

Find all related review articles published in 2008 for a PMID.

https://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?
dbfrom=pubmed&db=pubmed&id=19879512&term=review%5Bfilter%5D+AND+2008%5Bpdat%5Dh

holding
Name of LinkOut provider. Only URLs for the LinkOut provider specified by holding will be returned. The
value provided to holding should be the abbreviation of the LinkOut provider's name found in the <NameAbbr>
tag of the ELink XML output when cmd is set to llinks or llinkslib. The holding parameter only functions when
cmd is set to llinks or llinkslib.

58 Entrez Programming Utilities Help

https://eutils.ncbi.nlm.nih.gov/entrez/query/static/entrezlinks.html
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=gene&db=snp&id=93986
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=gene&db=snp&id=93986&linkname=gene_snp_genegenotype
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=gene&db=snp&id=93986&linkname=gene_snp_genegenotype
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&db=pubmed&id=19879512
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&db=pubmed&id=19879512&term=review%5Bfilter%5D+AND+2008%5Bpdat%5D
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&db=pubmed&id=19879512&term=review%5Bfilter%5D+AND+2008%5Bpdat%5D

Find information for all LinkOut providers for a PMID.

https://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&cmd=llinkslib&id=16210666

Find information from clinicaltrials.gov for a PMID.

https://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?
dbfrom=pubmed&cmd=llinkslib&id=16210666&holding=CTgov

Optional Parameters – Dates
These parameters only function when cmd is set to neighbor or neighbor_history and dbfrom is pubmed.

datetype
Type of date used to limit a link operation. The allowed values vary between Entrez databases, but common
values are 'mdat' (modification date), 'pdat' (publication date) and 'edat' (Entrez date). Generally an Entrez
database will have only two allowed values for datetype.

reldate
When reldate is set to an integer n, ELink returns only those items that have a date specified by datetype within
the last n days.

mindate, maxdate
Date range used to limit a link operation by the date specified by datetype. These two parameters (mindate,
maxdate) must be used together to specify an arbitrary date range. The general date format is YYYY/MM/DD,
and these variants are also allowed: YYYY, YYYY/MM.

EGQuery

Base URL
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/egquery.fcgi

Function
Provides the number of records retrieved in all Entrez databases by a single text query.

Required Parameter

term
Entrez text query. All special characters must be URL encoded. Spaces may be replaced by '+' signs. For very
long queries (more than several hundred characters long), consider using an HTTP POST call. See the PubMed
or Entrez help for information about search field descriptions and tags. Search fields and tags are database
specific.

https://eutils.ncbi.nlm.nih.gov/entrez/eutils/egquery.fcgi?term=asthma

ESpell

Base URL
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/espell.fcgi

The E-utilities In-Depth: Parameters, Syntax and More 59

https://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&cmd=llinkslib&id=16210666
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&cmd=llinkslib&id=16210666&holding=CTgov
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&cmd=llinkslib&id=16210666&holding=CTgov
https://www.ncbi.nlm.nih.gov/books/n/helppubmed/pubmedhelp/#pubmedhelp.Search_Field_Descrip
https://www.ncbi.nlm.nih.gov/books/n/helpentrez/EntrezHelp/
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/egquery.fcgi?term=asthma

Function
Provides spelling suggestions for terms within a single text query in a given database.

Required Parameters

db
Database to search. Value must be a valid Entrez database name (default = pubmed).

term
Entrez text query. All special characters must be URL encoded. Spaces may be replaced by '+' signs. For very
long queries (more than several hundred characters long), consider using an HTTP POST call. See the PubMed
or Entrez help for information about search field descriptions and tags. Search fields and tags are database
specific.

https://eutils.ncbi.nlm.nih.gov/entrez/eutils/espell.fcgi?db=pubmed&term=asthmaa+OR+alergies

ECitMatch

Base URL
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/ecitmatch.cgi

Function
Retrieves PubMed IDs (PMIDs) that correspond to a set of input citation strings.

Required Parameters

db
Database to search. The only supported value is ‘pubmed’.

rettype
Retrieval type. The only supported value is ‘xml’.

bdata
Citation strings. Each input citation must be represented by a citation string in the following format:

journal_title|year|volume|first_page|author_name|your_key|

Multiple citation strings may be provided by separating the strings with a carriage return character (%0D). The
your_key value is an arbitrary label provided by the user that may serve as a local identifier for the citation, and it
will be included in the output. Be aware that all spaces must be replaced by ‘+’ symbols and that citation strings
should end with a final vertical bar ‘|’.

https://eutils.ncbi.nlm.nih.gov/entrez/eutils/ecitmatch.cgi?
db=pubmed&retmode=xml&bdata=proc+natl+acad+sci+u+s+a|1991|88|3248|mann+bj|Art1|%0Dscience|
1987|235|182|palmenberg+ac|Art2|

60 Entrez Programming Utilities Help

https://www.ncbi.nlm.nih.gov/books/n/helpeutils/chapter2/#chapter2.chapter2_table1
https://www.ncbi.nlm.nih.gov/books/n/helppubmed/pubmedhelp/#pubmedhelp.Search_Field_Descrip
https://www.ncbi.nlm.nih.gov/books/n/helpentrez/EntrezHelp/
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/espell.fcgi?db=pubmed&term=asthmaa+OR+alergies
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/ecitmatch.cgi?db=pubmed&retmode=xml&bdata=proc+natl+acad+sci+u+s+a|1991|88|3248|mann+bj|Art1|%0Dscience|1987|235|182|palmenberg+ac|Art2|
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/ecitmatch.cgi?db=pubmed&retmode=xml&bdata=proc+natl+acad+sci+u+s+a|1991|88|3248|mann+bj|Art1|%0Dscience|1987|235|182|palmenberg+ac|Art2|
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/ecitmatch.cgi?db=pubmed&retmode=xml&bdata=proc+natl+acad+sci+u+s+a|1991|88|3248|mann+bj|Art1|%0Dscience|1987|235|182|palmenberg+ac|Art2|

Release Notes

EFetch; ELink JSON ouput: June 24, 2015
• EFetch now supports ClinVar and GTR
• ELink now provides output in JSON format

ESearch &sort; JSON output format: February 14, 2014
• ESearch now provides a supported sort parameter
• EInfo, ESearch and ESummary now provide output data in JSON format

ECitMatch, EInfo Version 2.0, EFetch: August 9, 2013
• ECitMatch is a new E-utility that serves as an API to the PubMed batch citation matcher
• EInfo has an updated XML output that includes two new fields: <IsTruncatable> and <IsRangeable>
• EFetch now supports the BioProject database.

EFetch Version 2.0. Target release date: February 15, 2012
• EFetch now supports the following databases: biosample, biosystems and sra
• EFetch now has defined default values for &retmode and &rettype for all supported databases (please see

Table 1 for all supported values of these parameters)
• EFetch no longer supports &retmode=html; requests containing &retmode=html will return data using

the default &retmode value for the specified database (&db)
• EFetch requests including &rettype=docsum return XML data equivalent to ESummary output

Release of new Genome database: November 9, 2011
• Entrez Genome has been completely redesigned, and database records now correspond to a species rather

than an individual chromosome sequence. Please see full details of the change at https://
www.ncbi.nlm.nih.gov/About/news/17Nov2011.html

• Old Genome IDs are no longer valid. A file is available on the NCBI FTP site that maps old Genome IDs
to Nucleotide GIs: ftp.ncbi.nih.gov/genomes/old_genomeID2nucGI

• EFetch no longer supports retrievals from Genome (db=genome).
• The ESummary XML for Genome has been recast to reflect the new data model.
• To view the new search fields and links supported for the new Genome database, please see https://

eutils.ncbi.nlm.nih.gov/entrez/eutils/einfo.fcgi?db=genome

ESummary Version 2.0. November 4, 2011
• ESummary now supports a new, alternative XML presentation for Entrez document summaries

(DocSums). The new XML is unique to each Entrez database and generally contains more extensive data
about the record than the original DocSum XML.

• There are no plans at present to discontinue the original DocSum XML, so developers can continue to use
this presentation, which will remain the default.

• Version 2.0 XML is returned when &version=2.0 is included in the ESummary URL.

Demonstration Programs
Please see Chapter 1 for sample Perl scripts.

The E-utilities In-Depth: Parameters, Syntax and More 61

https://www.ncbi.nlm.nih.gov/pubmed/batchcitmatch
https://www.ncbi.nlm.nih.gov/About/news/17Nov2011.html
https://www.ncbi.nlm.nih.gov/About/news/17Nov2011.html
ftp://ftp.ncbi.nih.gov/genomes/old_genomeID2nucGI
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/einfo.fcgi?db=genome
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/einfo.fcgi?db=genome

For More Information
Please see Chapter 1 for getting additional information about the E-utilities.

62 Entrez Programming Utilities Help

https://www.ncbi.nlm.nih.gov/books/n/helpeutils/chapter1/#chapter1.For_More_Information_8

The E-utility Web Service (SOAP)
Eric Sayers, PhD 1 and Vadim Miller2

Created: January 21, 2010; Updated: January 23, 2015.

Termination Announcement
The SOAP web service for the E-utilities will be TERMINATED permanently on July 1, 2015. All requests made
to this service after that date will fail.

If you have software that is currently using the E-utility SOAP web service, please plan to transition to using the
standard URL interface described in Chapters 1-4 of this book.

Please contact info@ncbi.nlm.nih.gov if you have questions about this change.

For More Information
E-utility DTDs

Please see Chapter 1 for getting additional information about the E-utilities.

Author Affiliations: 1 NCBI; Email: sayers@ncbi.nlm.nih.gov. 2 NCBI; Email: miller@ncbi.nlm.nih.gov.

 Corresponding author.

63

https://www.ncbi.nlm.nih.gov/books/n/helpeutils/chapter4/#chapter4.Eutility_DTDs
https://www.ncbi.nlm.nih.gov/books/n/helpeutils/chapter1/#chapter1.For_More_Information_8

64 Entrez Programming Utilities Help

Entrez Direct: E-utilities on the Unix Command Line
Jonathan Kans, PhD 1

Created: April 23, 2013; Updated: May 9, 2024.

Getting Started

Introduction
Entrez Direct (EDirect) provides access to the NCBI's suite of interconnected databases (publication, sequence,
structure, gene, variation, expression, etc.) from a Unix terminal window. Search terms are entered as command-
line arguments. Individual operations are connected with Unix pipes to construct multi-step queries. Selected
records can then be retrieved in a variety of formats.

Installation
EDirect will run on Unix and Macintosh computers, and under the Cygwin Unix-emulation environment on
Windows PCs. To install the EDirect software, open a terminal window and execute one of the following two
commands:

 sh -c "$(curl -fsSL https://ftp.ncbi.nlm.nih.gov/entrez/entrezdirect/install-edirect.sh)"

 sh -c "$(wget -q https://ftp.ncbi.nlm.nih.gov/entrez/entrezdirect/install-edirect.sh -O -)"

This will download a number of scripts and several precompiled programs into an "edirect" folder in the user's
home directory. It may then print an additional command for updating the PATH environment variable in the
user's configuration file. The editing instructions will look something like:

 echo "export PATH=\$HOME/edirect:\$PATH" >> $HOME/.bash_profile

As a convenience, the installation process ends by offering to run the PATH update command for you. Answer
"y" and press the Return key if you want it run. If the PATH is already set correctly, or if you prefer to make any
editing changes manually, just press Return.

Once installation is complete, run:

 export PATH=${HOME}/edirect:${PATH}

to set the PATH for the current terminal session.

Quick Start
The readme.pdf file included in the edirect folder contains a highly-abridged version of this document. It is
intended to convey the most important points in the least amount of time for the new user, while still presenting
the minimal essential details. It also covers subtle issues in several Entrez biological databases, demonstrates
integration of data from external sources, and has a brief introduction to scripting and programming.

The full documentation gives a much more in-depth exploration of the underlying topics, especially in the
Complex Objects section, and in the Additional Examples web page, which is organized by Entrez database. This
document also introduces other worthy topics, such as identifier lookup and sequence coordinate conversions,
and has a more thorough treatment of automation.

Author Affiliation: 1 NCBI; Email: kans@ncbi.nlm.nih.gov.

 Corresponding author.

65

Programmatic Access
EDirect connects to Entrez through the Entrez Programming Utilities interface. It supports searching by indexed
terms, looking up precomputed neighbors or links, filtering results by date or category, and downloading record
summaries or reports.

Navigation programs (esearch, elink, efilter, and efetch) communicate by means of a small structured message,
which can be passed invisibly between operations with a Unix pipe. The message includes the current database,
so it does not need to be given as an argument after the first step.

Accessory programs (nquire, transmute, and xtract) can help eliminate the need for writing custom software to
answer ad hoc questions. Queries can move seamlessly between EDirect programs and Unix utilities or scripts to
perform actions that cannot be accomplished entirely within Entrez.

All EDirect programs are designed to work on large sets of data. They handle many technical details behind the
scenes (avoiding the learning curve normally required for E-utilities programming). Intermediate results are
either saved on the Entrez history server or instantiated in the hidden message. For best performance, obtain an
API Key from NCBI, and place the following line in your .bash_profile and .zshrc configuration files:

 export NCBI_API_KEY=unique_api_key

Unix programs are run by typing the name of the program and then supplying any required or optional
arguments on the command line. Argument names are letters or words that start with a dash ("‑") character.

Each program has a ‑help command that prints detailed information about available arguments.

Navigation Functions
Esearch performs a new Entrez search using terms in indexed fields. It requires a ‑db argument for the database
name and uses ‑query for the search terms. For PubMed, without field qualifiers, the server uses automatic term
mapping to compose a search strategy by translating the supplied query:

 esearch -db pubmed -query "selective serotonin reuptake inhibitor"

Search terms can also be qualified with a bracketed field name to match within the specified index:

 esearch -db nuccore -query "insulin [PROT] AND rodents [ORGN]"

Elink looks up precomputed neighbors within a database, or finds associated records in other databases:

 elink -related

 elink -target gene

Elink also connects to the NIH Open Citation Collection dataset to find publications that cite the selected
PubMed articles, or to follow the reference lists of PubMed records:

 elink -cited

 elink -cites

Efilter limits the results of a previous query, with shortcuts that can also be used in esearch:

 efilter -molecule genomic -location chloroplast -country sweden -mindate 1985

Efetch downloads selected records or reports in a style designated by ‑format:

 efetch -format abstract

66 Entrez Programming Utilities Help

There is no need to use a script to loop over records in small groups, or write code to retry after a transient
network or server failure, or add a time delay between requests. All of those features are already built into the
EDirect commands.

Constructing Multi-Step Queries
EDirect allows individual operations to be described separately, combining them into a multi-step query by
using the vertical bar ("|") Unix pipe symbol:

 esearch -db pubmed -query "tn3 transposition immunity" | efetch -format medline

Writing Commands on Multiple Lines
A query can be continued on the next line by typing the backslash ("\") Unix escape character immediately
before pressing the Return key.

 esearch -db pubmed -query "opsin gene conversion" | \

Continuing the query looks up precomputed neighbors of the original papers, next links to all protein sequences
published in the related articles, then limits those to the rodent division of GenBank, and finally retrieves the
records in FASTA format:

 elink -related | \
 elink -target protein | \
 efilter -division rod | \
 efetch -format fasta

In most modern versions of Unix the vertical bar pipe symbol also allows the query to continue on the next line,
without the need for an additional backslash.

Accessory Programs
Nquire retrieves data from remote servers with URLs constructed from command line arguments:

 nquire -get https://icite.od.nih.gov api/pubs -pmids 2539356 |

Transmute converts a concatenated stream of JSON objects or other structured formats into XML:

 transmute -j2x |

Xtract can use waypoints to navigate a complex XML hierarchy and obtain data values by field name:

 xtract -pattern data -element cited_by |

The resulting output can be post-processed by Unix utilities or scripts:

 fmt -w 1 | sort -V | uniq

Discovery by Navigation
PubMed related articles are calculated by a statistical text retrieval algorithm using the title, abstract, and
medical subject headings (MeSH terms). The connections between papers can be used for making discoveries.
An example of this is finding the last enzymatic step in the vitamin A biosynthetic pathway.

Lycopene cyclase in plants converts lycopene into β-carotene, the immediate biochemical precursor of vitamin
A. An initial search on the enzyme finds 303 articles. Looking up precomputed neighbors returns 18,943 papers,
some of which might be expected to discuss other enzymes in the pathway:

 esearch -db pubmed -query "lycopene cyclase" | elink -related |

Entrez Direct: E-utilities on the Unix Command Line 67

β-carotene is known to be an essential nutrient, required in the diet of herbivores. This indicates that lycopene
cyclase is not present in animals (with a few exceptions caused by horizontal gene transfer), and that the enzyme
responsible for converting β-carotene into vitamin A is not present in plants.

Applying this knowledge, by linking the publication neighbors to their associated protein records and then
filtering those candidates using the NCBI taxonomy, can help locate the desired enzyme.

Linking from pubmed to the protein database finds 520,222 protein sequences:

 elink -target protein |

Limiting to mice excludes plants, fungi, and bacteria, which eliminates the earlier enzymes:

 efilter -organism mouse -source refseq |

This matches only 26 sequences, which is small enough to examine by retrieving the individual records:

 efetch -format fasta

As anticipated, the results include the enzyme that splits β-carotene into two molecules of retinal:

 ...
 >NP_067461.2 beta,beta-carotene 15,15'-dioxygenase isoform 1 [Mus musculus]
 MEIIFGQNKKEQLEPVQAKVTGSIPAWLQGTLLRNGPGMHTVGESKYNHWFDGLALLHSFSIRDGEVFYR
 SKYLQSDTYIANIEANRIVVSEFGTMAYPDPCKNIFSKAFSYLSHTIPDFTDNCLINIMKCGEDFYATTE
 TNYIRKIDPQTLETLEKVDYRKYVAVNLATSHPHYDEAGNVLNMGTSVVDKGRTKYVIFKIPATVPDSKK
 ...

Retrieving PubMed Reports
Piping PubMed query results to efetch and specifying the "abstract" format:

 esearch -db pubmed -query "lycopene cyclase" |
 efetch -format abstract

returns a set of reports that can be read by a person:

 ...
 85. PLoS One. 2013;8(3):e58144. doi: 10.1371/journal.pone.0058144. Epub ...

 Levels of lycopene β-cyclase 1 modulate carotenoid gene expression and
 accumulation in Daucus carota.

 Moreno JC(1), Pizarro L, Fuentes P, Handford M, Cifuentes V, Stange C.

 Author information:
 (1)Departamento de Biología, Facultad de Ciencias, Universidad de Chile,
 Santiago, Chile.

 Plant carotenoids are synthesized and accumulated in plastids through a
 highly regulated pathway. Lycopene β-cyclase (LCYB) is a key enzyme
 involved directly in the synthesis of α-carotene and β-carotene through
 ...

If "medline" format is used instead:

 esearch -db pubmed -query "lycopene cyclase" |
 efetch -format medline

the output can be entered into common bibliographic management software packages:

68 Entrez Programming Utilities Help

 ...
 PMID- 23555569
 OWN - NLM
 STAT- MEDLINE
 DA - 20130404
 DCOM- 20130930
 LR - 20131121
 IS - 1932-6203 (Electronic)
 IS - 1932-6203 (Linking)
 VI - 8
 IP - 3
 DP - 2013
 TI - Levels of lycopene beta-cyclase 1 modulate carotenoid gene expression
 and accumulation in Daucus carota.
 PG - e58144
 LID - 10.1371/journal.pone.0058144 [doi]
 AB - Plant carotenoids are synthesized and accumulated in plastids
 through a highly regulated pathway. Lycopene beta-cyclase (LCYB) is a
 key enzyme involved directly in the synthesis of alpha-carotene and
 ...

Retrieving Sequence Reports
Nucleotide and protein records can be downloaded in FASTA format:

 esearch -db protein -query "lycopene cyclase" |
 efetch -format fasta

which consists of a definition line followed by the sequence:

 ...
 >gi|735882|gb|AAA81880.1| lycopene cyclase [Arabidopsis thaliana]
 MDTLLKTPNKLDFFIPQFHGFERLCSNNPYPSRVRLGVKKRAIKIVSSVVSGSAALLDLVPETKKENLDF
 ELPLYDTSKSQVVDLAIVGGGPAGLAVAQQVSEAGLSVCSIDPSPKLIWPNNYGVWVDEFEAMDLLDCLD
 TTWSGAVVYVDEGVKKDLSRPYGRVNRKQLKSKMLQKCITNGVKFHQSKVTNVVHEEANSTVVCSDGVKI
 QASVVLDATGFSRCLVQYDKPYNPGYQVAYGIIAEVDGHPFDVDKMVFMDWRDKHLDSYPELKERNSKIP
 TFLYAMPFSSNRIFLEETSLVARPGLRMEDIQERMAARLKHLGINVKRIEEDERCVIPMGGPLPVLPQRV
 VGIGGTAGMVHPSTGYMVARTLAAAPIVANAIVRYLGSPSSNSLRGDQLSAEVWRDLWPIERRRQREFFC
 FGMDILLKLDLDATRRFFDAFFDLQPHYWHGFLSSRLFLPELLVFGLSLFSHASNTSRLEIMTKGTVPLA
 KMINNLVQDRD
 ...

Sequence records can also be obtained as GenBank or GenPept flatfiles:

 esearch -db protein -query "lycopene cyclase" |
 efetch -format gp

which have features annotating particular regions of the sequence:

 ...
 LOCUS AAA81880 501 aa linear PLN ...
 DEFINITION lycopene cyclase [Arabidopsis thaliana].
 ACCESSION AAA81880
 VERSION AAA81880.1 GI:735882
 DBSOURCE locus ATHLYC accession L40176.1
 KEYWORDS .
 SOURCE Arabidopsis thaliana (thale cress)
 ORGANISM Arabidopsis thaliana
 Eukaryota; Viridiplantae; Streptophyta; Embryophyta;
 Tracheophyta; Spermatophyta; Magnoliophyta; eudicotyledons;

Entrez Direct: E-utilities on the Unix Command Line 69

 Brassicales; Brassicaceae; Camelineae; Arabidopsis.
 REFERENCE 1 (residues 1 to 501)
 AUTHORS Scolnik,P.A. and Bartley,G.E.
 TITLE Nucleotide sequence of lycopene cyclase (GenBank L40176) from
 Arabidopsis (PGR95-019)
 JOURNAL Plant Physiol. 108 (3), 1343 (1995)
 ...
 FEATURES Location/Qualifiers
 source 1..501
 /organism="Arabidopsis thaliana"
 /db_xref="taxon:3702"
 Protein 1..501
 /product="lycopene cyclase"
 transit_peptide 1..80
 mat_peptide 81..501
 /product="lycopene cyclase"
 CDS 1..501
 /gene="LYC"
 /coded_by="L40176.1:2..1507"
 ORIGIN
 1 mdtllktpnk ldffipqfhg ferlcsnnpy psrvrlgvkk raikivssvv sgsaalldlv
 61 petkkenldf elplydtsks qvvdlaivgg gpaglavaqq vseaglsvcs idpspkliwp
 121 nnygvwvdef eamdlldcld ttwsgavvyv degvkkdlsr pygrvnrkql kskmlqkcit
 181 ngvkfhqskv tnvvheeans tvvcsdgvki qasvvldatg fsrclvqydk pynpgyqvay
 241 giiaevdghp fdvdkmvfmd wrdkhldsyp elkernskip tflyampfss nrifleetsl
 301 varpglrmed iqermaarlk hlginvkrie edercvipmg gplpvlpqrv vgiggtagmv
 361 hpstgymvar tlaaapivan aivrylgsps snslrgdqls aevwrdlwpi errrqreffc
 421 fgmdillkld ldatrrffda ffdlqphywh gflssrlflp ellvfglslf shasntsrle
 481 imtkgtvpla kminnlvqdr d
 //
 ...

Searching and Filtering

Restricting Query Results
The current results can be refined by further term searching in Entrez (useful in the protein database for limiting
BLAST neighbors to a taxonomic subset):

 esearch -db pubmed -query "opsin gene conversion" |
 elink -related |
 efilter -query "tetrachromacy"

Limiting by Date
Results can also be filtered by date. For example, the following statements:

 efilter -days 60 -datetype PDAT

 efilter -mindate 2000

 efilter -maxdate 1985

 efilter -mindate 1990 -maxdate 1999

restrict results to articles published in the previous two months, since the beginning of 2000, through the end of
1985, or in the 1990s, respectively. YYYY/MM and YYYY/MM/DD date formats are also accepted.

70 Entrez Programming Utilities Help

Fetch by Identifier
Efetch and elink can take a list of numeric identifiers or accessions in an ‑id argument:

 efetch -db pubmed -id 7252148,1937004 -format xml

 efetch -db nuccore -id 1121073309 -format acc

 efetch -db protein -id 3OQZ_a -format fasta

 efetch -db bioproject -id PRJNA257197 -format docsum

 efetch -db pmc -id PMC209839 -format medline

 elink -db pubmed -id 2539356 -cites

without the need for a preceding esearch command.

Non-integer accessions will be looked up with an internal search, using the appropriate field for the database:

 esearch -db bioproject -query "PRJNA257197 [PRJA]" |
 efetch -format uid | ...

Most databases use the [ACCN] field for identifier lookup, but there are a few exceptions:

 annotinfo [ASAC]
 assembly [ASAC]
 bioproject [PRJA]
 books [AID]
 clinvar [VACC]
 gds [ALL]
 genome [PRJA]
 geoprofiles [NAME]
 gtr [GTRACC]
 mesh [MHUI]
 nuccore [ACCN] or [PACC]
 pcsubstance [SRID]
 snp [RS] or [SS]

(For ‑db pmc it merely removes any "PMC" prefix from the integer identifier.)

For backward compatibility, esummary is a shortcut for esearch ‑format docsum:

 esummary -db bioproject -id PRJNA257197

 esummary -db sra -id SRR5437876

Reading Large Lists of Identifiers
Efetch and elink can also read a large list of identifiers or accessions piped in through stdin:

 cat "file_of_identifiers.txt" |
 efetch -db pubmed -format docsum

or from a file indicated by an ‑input argument:

 efetch -input "file_of_identifiers.txt" -db pubmed -format docsum

As mentioned above, there is no need to use a script to split the identifiers into smaller groups or add a time
delay between individual requests, since that functionality is already built into EDirect.

Entrez Direct: E-utilities on the Unix Command Line 71

Indexed Fields
The einfo command can report the fields and links that are indexed for each database:

 einfo -db protein -fields

This will return a table of field abbreviations and names indexed for proteins:

 ACCN Accession
 ALL All Fields
 ASSM Assembly
 AUTH Author
 BRD Breed
 CULT Cultivar
 DIV Division
 ECNO EC/RN Number
 FILT Filter
 FKEY Feature key
 ...

Qualifying Queries by Indexed Field
Query terms in esearch or efilter can be qualified by entering an indexed field abbreviation in brackets. Boolean
operators and parentheses can also be used in the query expression for more complex searches.

Commonly-used fields for PubMed queries include:

 [AFFL] Affiliation [LANG] Language
 [ALL] All Fields [MAJR] MeSH Major Topic
 [AUTH] Author [SUBH] MeSH Subheading
 [FAUT] Author - First [MESH] MeSH Terms
 [LAUT] Author - Last [PTYP] Publication Type
 [CRDT] Date - Create [WORD] Text Word
 [PDAT] Date - Publication [TITL] Title
 [FILT] Filter [TIAB] Title/Abstract
 [JOUR] Journal [UID] UID

and a qualified query looks like:

 "Tager HS [AUTH] AND glucagon [TIAB]"

Filters that limit search results to subsets of PubMed include:

 humans [MESH]
 pharmacokinetics [MESH]
 chemically induced [SUBH]
 all child [FILT]
 english [FILT]
 freetext [FILT]
 has abstract [FILT]
 historical article [FILT]
 randomized controlled trial [FILT]
 clinical trial, phase ii [PTYP]
 review [PTYP]

Sequence databases are indexed with a different set of search fields, including:

 [ACCN] Accession [MLWT] Molecular Weight
 [ALL] All Fields [ORGN] Organism
 [AUTH] Author [PACC] Primary Accession

72 Entrez Programming Utilities Help

 [GPRJ] BioProject [PROP] Properties
 [BIOS] BioSample [PROT] Protein Name
 [ECNO] EC/RN Number [SQID] SeqID String
 [FKEY] Feature key [SLEN] Sequence Length
 [FILT] Filter [SUBS] Substance Name
 [GENE] Gene Name [WORD] Text Word
 [JOUR] Journal [TITL] Title
 [KYWD] Keyword [UID] UID

and a sample query in the protein database is:

 "alcohol dehydrogenase [PROT] NOT (bacteria [ORGN] OR fungi [ORGN])"

Additional examples of subset filters in sequence databases are:

 mammalia [ORGN]
 mammalia [ORGN:noexp]
 txid40674 [ORGN]
 cds [FKEY]
 lacz [GENE]
 beta galactosidase [PROT]
 protein snp [FILT]
 reviewed [FILT]
 country united kingdom glasgow [TEXT]
 biomol genomic [PROP]
 dbxref flybase [PROP]
 gbdiv phg [PROP]
 phylogenetic study [PROP]
 sequence from mitochondrion [PROP]
 src cultivar [PROP]
 srcdb refseq validated [PROP]
 150:200 [SLEN]

(The calculated molecular weight (MLWT) field is only indexed for proteins (and structures), not nucleotides.)

See efilter ‑help for a list of filter shortcuts available for several Entrez databases.

Examining Intermediate Results
EDirect navigation functions produce a custom XML message with the relevant fields (database, web
environment, query key, and record count) that can be read by the next command in the pipeline. EDirect may
store intermediate results on the Entrez history server or instantiate them in the XML message.

The results of each step in a query can be examined to confirm expected behavior before adding the next step.
The Count field in the ENTREZ_DIRECT object contains the number of records returned by the previous step.
A good measure of query success is a reasonable (non-zero) count value. For example:

 esearch -db protein -query "tryptophan synthase alpha chain [PROT]" |
 efilter -query "28000:30000 [MLWT]" |
 elink -target structure |
 efilter -query "0:2 [RESO]"

produces:

 <ENTREZ_DIRECT>
 <Db>structure</Db>
 <WebEnv> MCID_5fac27e119f45d4eca20b0e6</WebEnv>
 <QueryKey>32</QueryKey>
 <Count>58</Count>

Entrez Direct: E-utilities on the Unix Command Line 73

 <Step>4</Step>
 </ENTREZ_DIRECT>

with 58 protein structures being within the specified molecular weight range and having the desired (X-ray
crystallographic) atomic position resolution.

(The QueryKey value differs from Step because the elink command splits its query into smaller chunks to avoid
server truncation limits and timeout errors.)

Combining Independent Queries
Independent esearch, elink, and efilter operations can be performed and then combined at the end by using the
history server's "#" convention to indicate query key numbers. (The steps to be combined must be in the same
database.) Subsequent esearch commands can take a ‑db argument to override the database piped in from the
previous step. (Piping the queries together is necessary for sharing the same history thread.)

Because elink splits a large query into multiple smaller link requests, the new QueryKey value cannot be
predicted in advance. The ‑label argument is used to get around this artifact. The label value is prefixed by a "#"
symbol and placed in parentheses in the final search. For example, the query:

 esearch -db protein -query "amyloid* [PROT]" |
 elink -target pubmed -label prot_cit |
 esearch -db gene -query "apo* [GENE]" |
 elink -target pubmed -label gene_cit |
 esearch -query "(#prot_cit) AND (#gene_cit)" |
 efetch -format docsum |
 xtract -pattern DocumentSummary -element Id Title

uses truncation searching (entering the beginning of a word followed by an asterisk) to return titles of papers
with links to amyloid protein sequence and apolipoprotein gene records:

 23962925 Genome analysis reveals insights into physiology and ...
 23959870 Low levels of copper disrupt brain amyloid-β homeostasis ...
 23371554 Genomic diversity and evolution of the head crest in the ...
 23251661 Novel genetic loci identified for the pathophysiology of ...
 ...

Structured Data

Advantages of XML Format
The ability to obtain Entrez records in structured eXtensible Markup Language (XML) format, and to easily
extract the underlying data, allows the user to ask novel questions that are not addressed by existing analysis
software.

The advantage of XML is that information is in specific locations in a well-defined data hierarchy. Accessing
individual units of data that are fielded by name, such as:

 <PubDate>2013</PubDate>
 <Source>PLoS One</Source>
 <Volume>8</Volume>
 <Issue>3</Issue>
 <Pages>e58144</Pages>

requires matching the same general pattern, differing only by the element name. This is much simpler than
parsing the units from a long, complex string:

74 Entrez Programming Utilities Help

 1. PLoS One. 2013;8(3):e58144 ...

The disadvantage of XML is that data extraction usually requires programming. But EDirect relies on the
common pattern of XML value representation to provide a simplified approach to interpreting XML data.

Conversion of XML into Tables
The xtract program uses command-line arguments to direct the selective conversion of data in XML format. It
allows record detection, path exploration, element selection, conditional processing, and report formatting to be
controlled independently.

The ‑pattern command partitions an XML stream by object name into individual records that are processed
separately. Within each record, the ‑element command does an exhaustive, depth-first search to find data
content by field name. Explicit paths to objects are not needed.

By default, the ‑pattern argument divides the results into rows, while placement of data into columns is
controlled by ‑element, to create a tab-delimited table.

Format Customization
Formatting commands allow extensive customization of the output. The line break between ‑pattern rows is
changed with ‑ret, while the tab character between ‑element columns is modified by ‑tab. Multiple instances of
the same element are distinguished using ‑sep, which controls their separation independently of the ‑tab
command. The following query:

 efetch -db pubmed -id 6271474,6092233,16589597 -format docsum |
 xtract -pattern DocumentSummary -sep "|" -element Id PubDate Name

returns a tab-delimited table with individual author names separated by vertical bars:

 6271474 1981 Casadaban MJ|Chou J|Lemaux P|Tu CP|Cohen SN
 6092233 1984 Jul-Aug Calderon IL|Contopoulou CR|Mortimer RK
 16589597 1954 Dec Garber ED

The ‑sep value also applies to distinct ‑element arguments that are grouped with commas. This can be used to
keep data from multiple related fields in the same column:

 -sep " " -element Initials,LastName

Groups of fields are preceded by the ‑pfx value and followed by the ‑sfx value, both of which are initially empty.

The ‑def command sets a default placeholder to be printed when none of the comma-separated fields in an
‑element clause are present:

 -def "-" -sep " " -element Year,Month,MedlineDate

Repackaging commands (‑wrp, ‑enc, and ‑pkg) wrap extracted data values with bracketed XML tags given only
the object name. For example, "‑wrp Word" issues the following formatting instructions:

 -pfx "<Word>" -sep "</Word><Word>" -sfx "</Word>"

and also ensures that data values containing encoded angle brackets, ampersands, quotation marks, or
apostrophes remain properly encoded inside the new XML.

Additional commands (‑tag, ‑att, ‑atr, ‑cls, ‑slf, and ‑end) allow generation of XML tags with attributes.
Running:

 -tag Item -att type journal -cls -element Source -end Item \
 -deq "\n" -tag Item -att type journal -atr name Source -slf

Entrez Direct: E-utilities on the Unix Command Line 75

will produce regular and self-closing XML objects, respectively:

 <Item type="journal">J Bacteriol</Item>
 <Item type="journal" name="J Bacteriol" />

Element Variants
Derivatives of ‑element were created to eliminate the inconvenience of having to write post-processing scripts to
perform otherwise trivial modifications or analyses on extracted data. They are subdivided into several
categories. Substitute for ‑element as needed. A representative selection is shown below:

 Positional: -first, -last, -even, -odd, -backward

 Numeric: -num, -len, -inc, -dec, -bin, -hex, -bit

 Statistics: -sum, -acc, -min, -max, -dev, -med

 Averages: -avg, -geo, -hrm, -rms

 Logarithms: -lge, -lg2, -log

 Character: -encode, -upper, -title, -mirror, -alnum

 String: -basic, -plain, -simple, -author, -journal, -prose

 Text: -words, -pairs, -letters, -order, -reverse

 Citation: -year, -month, -date, -page, -auth

 Sequence: -revcomp, -fasta, -ncbi2na, -molwt, -pentamers

 Translation: -cds2prot, -gcode, -frame

 Coordinate: -0-based, -1-based, -ucsc-based

 Variation: -hgvs

 Frequency: -histogram

 Expression: -reg, -exp, -replace

 Substitution: -transform, -translate

 Indexing: -aliases, -classify

 Miscellaneous: -doi, -wct, -trim, -pad, -accession, -numeric

The original ‑element prefix shortcuts, "#" and "%", are redirected to ‑num and ‑len, respectively.

See xtract ‑help for a brief description of each command.

Exploration Control
Exploration commands provide fine control over the order in which XML record contents are examined, by
separately presenting each instance of the chosen subregion. This limits what subsequent commands "see" at any
one time, and allows related fields in an object to be kept together.

In contrast to the simpler DocumentSummary format, records retrieved as PubmedArticle XML:

76 Entrez Programming Utilities Help

 efetch -db pubmed -id 1413997 -format xml |

have authors with separate fields for last name and initials:

 <Author>
 <LastName>Mortimer</LastName>
 <Initials>RK</Initials>
 </Author>

Without being given any guidance about context, an ‑element command on initials and last names:

 efetch -db pubmed -id 1413997 -format xml |
 xtract -pattern PubmedArticle -element Initials LastName

will explore the current record for each argument in turn, printing all initials followed by all last names:

 RK CR JS Mortimer Contopoulou King

Inserting a ‑block command adds another exploration layer between ‑pattern and ‑element , and redirects data
exploration to present the authors one at a time:

 efetch -db pubmed -id 1413997 -format xml |
 xtract -pattern PubmedArticle -block Author -element Initials LastName

Each time through the loop, the ‑element command only sees the current author's values. This restores the
correct association of initials and last names in the output:

 RK Mortimer CR Contopoulou JS King

Grouping the two author subfields with a comma, and adjusting the ‑sep and ‑tab values:

 efetch -db pubmed -id 1413997 -format xml |
 xtract -pattern PubmedArticle -block Author \
 -sep " " -tab ", " -element Initials,LastName

produces a more traditional formatting of author names:

 RK Mortimer, CR Contopoulou, JS King

Sequential Exploration
Multiple ‑block statements can be used in a single xtract to explore different areas of the XML. This limits
element extraction to the desired subregions, and allows disambiguation of fields with identical names. For
example:

 efetch -db pubmed -id 6092233,4640931,4296474 -format xml |
 xtract -pattern PubmedArticle -element MedlineCitation/PMID \
 -block PubDate -sep " " -element Year,Month,MedlineDate \
 -block AuthorList -num Author -sep "/" -element LastName |
 sort-table -k 3,3n -k 4,4f

generates a table that allows easy parsing of author last names, and sorts the results by author count:

 4296474 1968 Apr 1 Friedmann
 4640931 1972 Dec 2 Tager/Steiner
 6092233 1984 Jul-Aug 3 Calderon/Contopoulou/Mortimer

Like ‑element arguments, the individual ‑block statements are executed sequentially, in order of appearance.

Note that "‑element MedlineCitation/PMID" uses the parent / child construct to prevent the display of
additional PMID items that might be present later in CommentsCorrections objects.

Entrez Direct: E-utilities on the Unix Command Line 77

Note also that the PubDate object can exist either in a structured form:

 <PubDate>
 <Year>1968</Year>
 <Month>Apr</Month>
 <Day>25</Day>
 </PubDate>

(with the Day field frequently absent), or in a string form:

 <PubDate>
 <MedlineDate>1984 Jul-Aug</MedlineDate>
 </PubDate>

but would not contain a mixture of both types, so the directive:

 -element Year,Month,MedlineDate

will only contribute a single column to the output.

Nested Exploration
Exploration command names (‑group, ‑block, and ‑subset) are assigned to a precedence hierarchy:

 -pattern > -group > -block > -subset > -element

and are combined in ranked order to control object iteration at progressively deeper levels in the XML data
structure. Each command argument acts as a "nested for-loop" control variable, retaining information about the
context, or state of exploration, at its level.

(Hypothetical) census data would need several nested loops to visit each unique address in context:

 -pattern State -group City -block Street -subset Number -element Resident

A nucleotide or protein sequence record can have multiple features. Each feature can have multiple qualifiers.
And every qualifier has separate name and value nodes. Exploring this natural data hierarchy, with ‑pattern for
the sequence, ‑group for the feature, and ‑block for the qualifier:

 efetch -db nuccore -id NG_008030.1 -format gbc |
 xtract -pattern INSDSeq -element INSDSeq_accession-version \
 -group INSDFeature -deq "\n\t" -element INSDFeature_key \
 -block INSDQualifier -deq "\n\t\t" \
 -element INSDQualifier_name INSDQualifier_value

keeps qualifiers, such as gene and product, associated with their parent features, and keeps qualifier names and
values together on the same line:

 NG_008030.1
 source
 organism Homo sapiens
 mol_type genomic DNA
 db_xref taxon:9606
 gene
 gene COL5A1
 mRNA
 gene COL5A1
 product collagen type V alpha 1 chain, transcript variant 1
 transcript_id NM_000093.4
 CDS
 gene COL5A1

78 Entrez Programming Utilities Help

 product collagen alpha-1(V) chain isoform 1 preproprotein
 protein_id NP_000084.3
 translation MDVHTRWKARSALRPGAPLLPPLLLLLLWAPPPSRAAQP...
 ...

Saving Data in Variables
A value can be recorded in a variable and used wherever needed. Variables are created by a hyphen followed by a
name consisting of a string of capital letters or digits (e.g., ‑KEY). Variable values are retrieved by placing an
ampersand before the variable name (e.g., "&KEY") in an ‑element statement:

 efetch -db nuccore -id NG_008030.1 -format gbc |
 xtract -pattern INSDSeq -element INSDSeq_accession-version \
 -group INSDFeature -KEY INSDFeature_key \
 -block INSDQualifier -deq "\n\t" \
 -element "&KEY" INSDQualifier_name INSDQualifier_value

This version prints the feature key on each line before the qualifier name and value, even though the feature key
is now outside of the visibility scope (which is the current qualifier):

 NG_008030.1
 source organism Homo sapiens
 source mol_type genomic DNA
 source db_xref taxon:9606
 gene gene COL5A1
 mRNA gene COL5A1
 mRNA product collagen type V alpha 1 chain, transcript variant 1
 mRNA transcript_id NM_000093.4
 CDS gene COL5A1
 CDS product collagen alpha-1(V) chain isoform 1 preproprotein
 CDS protein_id NP_000084.3
 CDS translation MDVHTRWKARSALRPGAPLLPPLLLLLLWAPPPSRAAQP...
 ...

Variables can be (re)initialized with an explicit literal value inside parentheses:

 -block Author -sep " " -tab "" -element "&COM" Initials,LastName -COM "(,)"

They can also be used as the first argument in a conditional statement:

 -CHR Chromosome -block GenomicInfoType -if "&CHR" -differs-from ChrLoc

Using a double-hyphen (e.g., ‑‑STATS) appends a value to the variable.

In addition, a variable can also save the the modified data resulting from an ‑element variant operation. This
allows multiple sequential transitions within a single xtract command:

 -END -sum "Start,Length" -MID -avg "Start,&END"

All variables are reset when the next record is processed.

Conditional Execution
Conditional processing commands (‑if, ‑unless, ‑and, ‑or, and ‑else) restrict object exploration by data
content. They check to see if the named field is within the scope, and may be used in conjunction with string,
numeric, or object constraints to require an additional match by value. For example:

 esearch -db pubmed -query "Havran W [AUTH]" |
 efetch -format xml |
 xtract -pattern PubmedArticle -if "#Author" -lt 14 \

Entrez Direct: E-utilities on the Unix Command Line 79

 -block Author -if LastName -is-not Havran \
 -sep ", " -tab "\n" -element LastName,Initials[1:1] |
 sort-uniq-count-rank

selects papers with fewer than 14 authors and prints a table of the most frequent collaborators, using a range to
keep only the first initial so that variants like "Berg, CM" and "Berg, C" are combined:

 34 Witherden, D
 15 Boismenu, R
 12 Jameson, J
 10 Allison, J
 10 Fitch, F
 ...

Numeric constraints can also compare the integer values of two fields. This can be used to find genes that are
encoded on the minus strand of a nucleotide sequence:

 -if ChrStart -gt ChrStop

Object constraints will compare the string values of two named fields, and can look for internal inconsistencies
between fields whose contents should (in most cases) be identical:

 -if Chromosome -differs-from ChrLoc

The ‑position command restricts presentation of objects by relative location or index number:

 -block Author -position last -sep ", " -element LastName,Initials

Multiple conditions are specified with ‑and and ‑or commands:

 -if @score -equals 1 -or @score -starts-with 0.9

The ‑else command can supply alternative ‑element or ‑lbl instructions to be run if the condition is not
satisfied:

 -if MapLocation -element MapLocation -else -lbl "\-"

but setting a default value with ‑def may be more convenient in simple cases.

Parallel ‑if and ‑unless statements can be used to provide a more complex response to alternative conditions
that include nested explorations.

Post-processing Functions
Elink ‑cited can perform a reverse citation lookup, thanks to a data service provided by the NIH Open Citation
Collection. The extracted author names can be processed by piping to a chain of Unix utilities:

 esearch -db pubmed -query "Beadle GW [AUTH]" |
 elink -cited |
 efetch -format docsum |
 xtract -pattern Author -element Name |
 sort -f | uniq -i -c

which produces an alphabetized count of authors who cited the original papers:

 1 Abellan-Schneyder I
 1 Abramowitz M
 1 ABREU LA
 1 ABREU RR
 1 Abril JF
 1 Abächerli E

80 Entrez Programming Utilities Help

 1 Achetib N
 1 Adams CM
 2 ADELBERG EA
 1 Adrian AB
 ...

Rather than always having to retype a series of common post-processing instructions, frequently-used
combinations of Unix commands can be placed in a function, stored in an alias file (e.g., the
user's .bash_profile), and executed by name. For example:

 SortUniqCountRank() {
 grep '.' |
 sort -f |
 uniq -i -c |
 awk '{ n=$1; sub(/[\t]*[0-9]+[\t]/, ""); print n "\t" $0 }' |
 sort -t "$(printf '\t')" -k 1,1nr -k 2f
 }
 alias sort-uniq-count-rank='SortUniqCountRank'

(An enhanced version of sort-uniq-count-rank that accepts customization arguments is now included with
EDirect as a stand-alone script.)

The raw author names can be passed directly to the sort-uniq-count-rank script:

 esearch -db pubmed -query "Beadle GW [AUTH]" |
 elink -cited |
 efetch -format docsum |
 xtract -pattern Author -element Name |
 sort-uniq-count-rank

to produce a tab-delimited ranked list of authors who most often cited the original papers:

 17 Hawley RS
 13 Beadle GW
 13 PERKINS DD
 11 Glass NL
 11 Vécsei L
 10 Toldi J
 9 TATUM EL
 8 Ephrussi B
 8 LEDERBERG J
 ...

Similarly, elink ‑cites uses NIH OCC data to return an article's reference list.

Other scripts for tab-delimited files include sort-table, reorder-columns, and align-columns. Unix parameter
expansion requires filter-columns and print-columns arguments to be in single quotes.

Note that EDirect commands can also be used inside Unix functions or scripts.

Viewing an XML Hierarchy
Piping a PubmedArticle XML object to xtract ‑outline will give an indented overview of the XML hierarchy:

 PubmedArticle
 MedlineCitation
 PMID
 DateCompleted
 Year
 Month

Entrez Direct: E-utilities on the Unix Command Line 81

 Day
 ...
 Article
 Journal
 ...
 Title
 ISOAbbreviation
 ArticleTitle
 ...
 Abstract
 AbstractText
 AuthorList
 Author
 LastName
 ForeName
 Initials
 AffiliationInfo
 Affiliation
 Author
 ...

Using xtract ‑synopsis or ‑contour will show the full paths to all nodes or just the terminal (leaf) nodes,
respectively. Piping those results to "sort-uniq-count" will produce a table of unique paths.

Code Nesting Comparison
Sketching with indented pseudo code can clarify relative nesting levels. The extraction command:

 xtract -pattern PubmedArticle \
 -block Author -element Initials,LastName \
 -block MeshHeading \
 -if QualifierName \
 -element DescriptorName \
 -subset QualifierName -element QualifierName

where the rank of the argument name controls the nesting depth, could be represented as a computer program in
pseudo code by:

 for pat = each PubmedArticle {
 for blk = each pat.Author {
 print blk.Initials blk.LastName
 }
 for blk = each pat.MeSHTerm {
 if blk.Qual is present {
 print blk.MeshName
 for sbs = each blk.Qual {
 print sbs.QualName
 }
 }
 }
 }

where the brace indentation count controls the nesting depth.

Extra arguments are held in reserve to provide additional levels of organization, should the need arise in the
future for processing complex, deeply-nested XML data. The exploration commands below ‑pattern, in order of
rank, are:

82 Entrez Programming Utilities Help

 -path
 -division
 -group
 -branch
 -block
 -section
 -subset
 -unit

Starting xtract exploration with ‑block, and expanding with ‑group and ‑subset, leaves additional level names
that can be used wherever needed without having to redesign the entire command.

Complex Objects

Author Exploration
What's in a name? That which we call an author by any other name may be a consortium, investigator, or editor:

 <PubmedArticle>
 <MedlineCitation>
 <PMID>99999999</PMID>
 <Article>
 <AuthorList>
 <Author>
 <LastName>Tinker</LastName>
 </Author>
 <Author>
 <LastName>Evers</LastName>
 </Author>
 <Author>
 <LastName>Chance</LastName>
 </Author>
 <Author>
 <CollectiveName>FlyBase Consortium</CollectiveName>
 </Author>
 </AuthorList>
 </Article>
 <InvestigatorList>
 <Investigator>
 <LastName>Alpher</LastName>
 </Investigator>
 <Investigator>
 <LastName>Bethe</LastName>
 </Investigator>
 <Investigator>
 <LastName>Gamow</LastName>
 </Investigator>
 </InvestigatorList>
 </MedlineCitation>
 </PubmedArticle>

Within the record, ‑element exploration on last name:

 xtract -pattern PubmedArticle -element LastName

prints each last name, but does not match the consortium:

 Tinker Evers Chance Alpher Bethe Gamow

Entrez Direct: E-utilities on the Unix Command Line 83

Limiting to the author list:

 xtract -pattern PubmedArticle -block AuthorList -element LastName

excludes the investigators:

 Tinker Evers Chance

Using ‑num on each type of object:

 xtract -pattern PubmedArticle -num Author Investigator LastName CollectiveName

displays the various object counts:

 4 3 6 1

Date Selection
Dates come in all shapes and sizes:

 <PubmedArticle>
 <MedlineCitation>
 <PMID>99999999</PMID>
 <DateCompleted>
 <Year>2011</Year>
 </DateCompleted>
 <DateRevised>
 <Year>2012</Year>
 </DateRevised>
 <Article>
 <Journal>
 <JournalIssue>
 <PubDate>
 <Year>2013</Year>
 </PubDate>
 </JournalIssue>
 </Journal>
 <ArticleDate>
 <Year>2014</Year>
 </ArticleDate>
 </Article>
 </MedlineCitation>
 <PubmedData>
 <History>
 <PubMedPubDate PubStatus="received">
 <Year>2015</Year>
 </PubMedPubDate>
 <PubMedPubDate PubStatus="accepted">
 <Year>2016</Year>
 </PubMedPubDate>
 <PubMedPubDate PubStatus="entrez">
 <Year>2017</Year>
 </PubMedPubDate>
 <PubMedPubDate PubStatus="pubmed">
 <Year>2018</Year>
 </PubMedPubDate>
 <PubMedPubDate PubStatus="medline">
 <Year>2019</Year>
 </PubMedPubDate>
 </History>

84 Entrez Programming Utilities Help

 </PubmedData>
 </PubmedArticle>

Within the record, ‑element exploration on the year:

 xtract -pattern PubmedArticle -element Year

finds and prints all nine instances:

 2011 2012 2013 2014 2015 2016 2017 2018 2019

Using ‑block to limit the scope:

 xtract -pattern PubmedArticle -block History -element Year

prints only the five years within the History object:

 2015 2016 2017 2018 2019

Inserting a conditional statement to limit element selection to a date with a specific attribute:

 xtract -pattern PubmedArticle -block History \
 -if @PubStatus -equals "pubmed" -element Year

surprisingly still prints all five years within History:

 2015 2016 2017 2018 2019

This is because the ‑if command uses the same exploration logic as ‑element, but is designed to declare success
if it finds a match anywhere within the current scope. There is indeed a "pubmed" attribute within History, in
one of the five PubMedPubDate child objects, so the test succeeds. Thus, ‑element is given free rein to do its own
exploration in History, and prints all five years.

The solution is to explore the individual PubMedPubDate objects:

 xtract -pattern PubmedArticle -block PubMedPubDate \
 -if @PubStatus -equals "pubmed" -element Year

This visits each PubMedPubDate separately, with the ‑if test matching only the indicated date type, thus
returning only the desired year:

 2018

PMID Extraction
Because of the presence of a CommentsCorrections object:

 <PubmedArticle>
 <MedlineCitation>
 <PMID>99999999</PMID>
 <CommentsCorrectionsList>
 <CommentsCorrections RefType="ErratumFor">
 <PMID>88888888</PMID>
 </CommentsCorrections>
 </CommentsCorrectionsList>
 </MedlineCitation>
 </PubmedArticle>

attempting to print the record's PubMed Identifier:

 xtract -pattern PubmedArticle -element PMID

Entrez Direct: E-utilities on the Unix Command Line 85

also returns the PMID of the comment:

 99999999 88888888

Using an exploration command cannot exclude the second instance, because it would need a parent node unique
to the first element, and the chain of parents to the first PMID:

 PubmedArticle/MedlineCitation

is a subset of the chain of parents to the second PMID:

 PubmedArticle/MedlineCitation/CommentsCorrectionList/CommentsCorrections

Although ‑first PMID will work in this particular case, the more general solution is to limit by subpath with the
parent / child construct:

 xtract -pattern PubmedArticle -element MedlineCitation/PMID

That would work even if the order of objects were reversed.

Heterogeneous Data
XML objects can contain a heterogeneous mix of components. For example:

 efetch -db pubmed -id 21433338,17247418 -format xml

returns a mixture of book and journal records:

 <PubmedArticleSet>
 <PubmedBookArticle>
 <BookDocument>
 ...
 </PubmedBookData>
 </PubmedBookArticle>
 <PubmedArticle>
 <MedlineCitation>
 ...
 </PubmedData>
 </PubmedArticle>
 </PubmedArticleSet>

The parent / star construct is used to visit the individual components, even though they may have different
names. Piping the output to:

 xtract -pattern "PubmedArticleSet/*" -element "*"

separately prints the entirety of each XML component:

 <PubmedBookArticle><BookDocument> ... </PubmedBookData></PubmedBookArticle>
 <PubmedArticle><MedlineCitation> ... </PubmedData></PubmedArticle>

Use of the parent / child construct can isolate objects of the same name that differ by their location in the XML
hierarchy. For example:

 efetch -db pubmed -id 21433338,17247418 -format xml |
 xtract -pattern "PubmedArticleSet/*" \
 -group "BookDocument/AuthorList" -tab "\n" -element LastName \
 -group "Book/AuthorList" -tab "\n" -element LastName \
 -group "Article/AuthorList" -tab "\n" -element LastName

writes separate lines for book/chapter authors, book editors, and article authors:

86 Entrez Programming Utilities Help

 Fauci Desrosiers
 Coffin Hughes Varmus
 Lederberg Cavalli Lederberg

Simply exploring with individual arguments:

 -group BookDocument -block AuthorList -element LastName

would visit the editors (at BookDocument/Book/AuthorList) as well as the authors (at BookDocument/
AuthorList), and print names in order of appearance in the XML:

 Coffin Hughes Varmus Fauci Desrosiers

(In this particular example the book author lists could be distinguished by using ‑if "@Type" ‑equals authors or
‑if "@Type" ‑equals editors, but exploring by parent / child is a general position-based approach.)

Recursive Definitions
Certain XML objects returned by efetch are recursively defined, including Taxon in ‑db taxonomy and Gene-
commentary in ‑db gene. Thus, they can contain nested objects with the same XML tag.

Retrieving a set of taxonomy records:

 efetch -db taxonomy -id 9606,7227 -format xml

produces XML with nested Taxon objects (marked below with line references) for each rank in the taxonomic
lineage:

 <TaxaSet>
1 <Taxon>
 <TaxId>9606</TaxId>
 <ScientificName>Homo sapiens</ScientificName>
 ...
 <LineageEx>
2 <Taxon>
 <TaxId>131567</TaxId>
 <ScientificName>cellular organisms</ScientificName>
 <Rank>no rank</Rank>
3 </Taxon>
4 <Taxon>
 <TaxId>2759</TaxId>
 <ScientificName>Eukaryota</ScientificName>
 <Rank>superkingdom</Rank>
5 </Taxon>
 ...
 </LineageEx>
 ...
6 </Taxon>
7 <Taxon>
 <TaxId>7227</TaxId>
 <ScientificName>Drosophila melanogaster</ScientificName>
 ...
8 </Taxon>
 </TaxaSet>

Xtract tracks XML object nesting to determine that the <Taxon> start tag on line 1 is closed by the </Taxon>
stop tag on line 6, and not by the first </Taxon> encountered on line 3.

When a recursive object (e.g., Taxon) is given to an exploration command:

Entrez Direct: E-utilities on the Unix Command Line 87

 efetch -db taxonomy -id 9606,7227,10090 -format xml |
 xtract -pattern Taxon \
 -element TaxId ScientificName GenbankCommonName Division

subsequent ‑element commands are blocked from descending into the internal objects, and return information
only for the main entries:

 9606 Homo sapiens human Primates
 7227 Drosophila melanogaster fruit fly Invertebrates
 10090 Mus musculus house mouse Rodents

The star / child construct will skip past the outer start tag:

 efetch -db taxonomy -id 9606,7227,10090 -format xml |
 xtract -pattern Taxon -block "*/Taxon" \
 -tab "\n" -element TaxId,ScientificName

to visit the next level of nested objects individually:

 131567 cellular organisms
 2759 Eukaryota
 33154 Opisthokonta
 ...

Recursive objects can be fully explored with a double star / child construct:

 esearch -db gene -query "DMD [GENE] AND human [ORGN]" |
 efetch -format xml |
 xtract -pattern Entrezgene -block "**/Gene-commentary" \
 -tab "\n" -element Gene-commentary_type@value,Gene-commentary_accession

which visits every child object regardless of nesting depth:

 genomic NC_000023
 mRNA XM_006724469
 peptide XP_006724532
 mRNA XM_011545467
 peptide XP_011543769
 ...

Additional Elink Options
Elink has several additional modes that can be specified with the ‑cmd argument. When not using the default
"neighbor_history" command, elink will return an eLinkResult XML object, with the links for each UID
presented in separate blocks. For example, the "neighbor" command:

 esearch -db pubmed -query "Hoffmann PC [AUTH] AND dopamine [MAJR]" |
 elink -related -cmd neighbor |
 xtract -pattern LinkSetDb -element Id

will show the original PMID in the first column and related article PMIDs in subsequent columns:

 1504781 11754494 3815119 1684029 14614914 12128255 ...
 1684029 3815119 1504781 8097798 17161385 14755628 ...
 2572612 2903614 6152036 2905789 9483560 1352865 ...
 ...

The "acheck" command returns all available link names for each record:

 esearch -db pubmed -query "Federhen S [AUTH]" |
 elink -cmd acheck |

88 Entrez Programming Utilities Help

 xtract -pattern LinkSet -tab "\n" -element IdLinkSet/Id \
 -block LinkInfo -tab "\n" -element LinkName

printing each on its own line:

 25510495
 pubmed_images
 pubmed_pmc
 pubmed_pmc_local
 pubmed_pmc_refs
 pubmed_pubmed
 pubmed_pubmed_citedin
 ...

The "prlinks" command can obtain the URL reference to the publisher web page for an article. The Unix "xargs"
command calls elink separately for each identifier:

 epost -db pubmed -id 22966225,19880848 |
 efetch -format uid |
 xargs -n 1 elink -db pubmed -cmd prlinks -id |
 xtract -pattern LinkSet -first Id -element ObjUrl/Url

Repackaging XML Results
Splitting abstract paragraphs into individual words, while using XML reformatting commands:

 efetch -db pubmed -id 2539356 -format xml |
 xtract -stops -rec Rec -pattern PubmedArticle \
 -enc Paragraph -wrp Word -words AbstractText

generates:

 ...
 <Paragraph>
 <Word>the</Word>
 <Word>tn3</Word>
 <Word>transposon</Word>
 <Word>inserts</Word>
 ...
 <Word>was</Word>
 <Word>necessary</Word>
 <Word>for</Word>
 <Word>immunity</Word>
 </Paragraph>
 ...

with the words from each abstract instance encased in a separate parent object. Word counts for each paragraph
could then be calculated by piping to:

 xtract -pattern Rec -block Paragraph -num Word

Multi-Step Transformations
Although xtract provides ‑element variants to do simple data manipulation, more complex tasks are sometimes
best handled by being broken up into a series of simpler transformations. These are also known as structured
data "processing chains".

Document summaries for two bacterial chromosomes:

 efetch -db nuccore -id U00096,CP002956 -format docsum |

Entrez Direct: E-utilities on the Unix Command Line 89

contain several individual fields and a complex series of self-closing Stat objects:

 <DocumentSummary>
 <Id>545778205</Id>
 <Caption>U00096</Caption>
 <Title>Escherichia coli str. K-12 substr. MG1655, complete genome</Title>
 <CreateDate>1998/10/13</CreateDate>
 <UpdateDate>2020/09/23</UpdateDate>
 <TaxId>511145</TaxId>
 <Slen>4641652</Slen>
 <Biomol>genomic</Biomol>
 <MolType>dna</MolType>
 <Topology>circular</Topology>
 <Genome>chromosome</Genome>
 <Completeness>complete</Completeness>
 <GeneticCode>11</GeneticCode>
 <Organism>Escherichia coli str. K-12 substr. MG1655</Organism>
 <Strain>K-12</Strain>
 <BioSample>SAMN02604091</BioSample>
 <Statistics>
 <Stat type="Length" count="4641652"/>
 <Stat type="all" count="9198"/>
 <Stat type="cdregion" count="4302"/>
 <Stat type="cdregion" subtype="CDS" count="4285"/>
 <Stat type="cdregion" subtype="CDS/pseudo" count="17"/>
 <Stat type="gene" count="4609"/>
 <Stat type="gene" subtype="Gene" count="4464"/>
 <Stat type="gene" subtype="Gene/pseudo" count="145"/>
 <Stat type="rna" count="187"/>
 <Stat type="rna" subtype="ncRNA" count="79"/>
 <Stat type="rna" subtype="rRNA" count="22"/>
 <Stat type="rna" subtype="tRNA" count="86"/>
 <Stat source="all" type="Length" count="4641652"/>
 <Stat source="all" type="all" count="13500"/>
 <Stat source="all" type="cdregion" count="4302"/>
 <Stat source="all" type="gene" count="4609"/>
 <Stat source="all" type="prot" count="4302"/>
 <Stat source="all" type="rna" count="187"/>
 </Statistics>
 <AccessionVersion>U00096.3</AccessionVersion>
 </DocumentSummary>
 <DocumentSummary>
 <Id>342852136</Id>
 <Caption>CP002956</Caption>
 <Title>Yersinia pestis A1122, complete genome</Title>
 ...

which make extracting the single "best" value for gene count a non-trivial exercise.

In addition to repackaging commands that surround extracted values with XML tags, the ‑element "*" construct
prints the entirety of the current scope, including its XML wrapper. Piping the document summaries to:

 xtract -set Set -rec Rec -pattern DocumentSummary \
 -block DocumentSummary -pkg Common \
 -wrp Accession -element AccessionVersion \
 -wrp Organism -element Organism \
 -wrp Length -element Slen \
 -wrp Title -element Title \
 -wrp Date -element CreateDate \

90 Entrez Programming Utilities Help

 -wrp Biomol -element Biomol \
 -wrp MolType -element MolType \
 -block Stat -if @type -equals gene -pkg Gene -element "*" \
 -block Stat -if @type -equals rna -pkg RNA -element "*" \
 -block Stat -if @type -equals cdregion -pkg CDS -element "*" |

encloses several fields in a Common block, and packages statistics on gene, RNA, and coding region features into
separate sections of a new XML object:

 ...
 <Rec>
 <Common>
 <Accession>U00096.3</Accession>
 <Organism>Escherichia coli str. K-12 substr. MG1655</Organism>
 <Length>4641652</Length>
 <Title>Escherichia coli str. K-12 substr. MG1655, complete genome</Title>
 <Date>1998/10/13</Date>
 <Biomol>genomic</Biomol>
 <MolType>dna</MolType>
 </Common>
 <Gene>
 <Stat type="gene" count="4609"/>
 <Stat type="gene" subtype="Gene" count="4464"/>
 <Stat type="gene" subtype="Gene/pseudo" count="145"/>
 <Stat source="all" type="gene" count="4609"/>
 </Gene>
 <RNA>
 <Stat type="rna" count="187"/>
 <Stat type="rna" subtype="ncRNA" count="79"/>
 <Stat type="rna" subtype="rRNA" count="22"/>
 <Stat type="rna" subtype="tRNA" count="86"/>
 <Stat source="all" type="rna" count="187"/>
 </RNA>
 <CDS>
 <Stat type="cdregion" count="4302"/>
 <Stat type="cdregion" subtype="CDS" count="4285"/>
 <Stat type="cdregion" subtype="CDS/pseudo" count="17"/>
 <Stat source="all" type="cdregion" count="4302"/>
 </CDS>
 </Rec>
 ...

With statistics from different types of feature now segregated in their own substructures, total counts for each
can be extracted with the ‑first command:

 xtract -set Set -rec Rec -pattern Rec \
 -block Common -element "*" \
 -block Gene -wrp GeneCount -first Stat@count \
 -block RNA -wrp RnaCount -first Stat@count \
 -block CDS -wrp CDSCount -first Stat@count |

This rewraps the data into a third XML form containing specific feature counts:

 ...
 <Rec>
 <Common>
 <Accession>U00096.3</Accession>
 <Organism>Escherichia coli str. K-12 substr. MG1655</Organism>
 <Length>4641652</Length>

Entrez Direct: E-utilities on the Unix Command Line 91

 <Title>Escherichia coli str. K-12 substr. MG1655, complete genome</Title>
 <Date>1998/10/13</Date>
 <Biomol>genomic</Biomol>
 <MolType>dna</MolType>
 </Common>
 <GeneCount>4609</GeneCount>
 <RnaCount>187</RnaCount>
 <CDSCount>4302</CDSCount>
 </Rec>
 ...

without requiring extraction commands for the individual elements in the Common block to be repeated at each
step.

Assuming the contents are satisfactory, passing the last structured form to:

 xtract \
 -head accession organism length gene_count rna_count \
 -pattern Rec -def "-" \
 -element Accession Organism Length GeneCount RnaCount

produces a tab-delimited table with the desired values:

 accession organism length gene_count rna_count
 U00096.3 Escherichia coli ... 4641652 4609 187
 CP002956.1 Yersinia pestis A1122 4553770 4217 86

If a different order of fields is desired after the final xtract has been run, piping to:

 reorder-columns 1 3 5 4

will rearrange the output, including the column headings:

 accession length rna_count gene_count
 U00096.3 4641652 187 4609
 CP002956.1 4553770 86 4217

Sequence Records

NCBI Data Model for Sequence Records
The NCBI data model for sequence records is based on the central dogma of molecular biology. Sequences,
including genomic DNA, messenger RNAs, and protein products, are "instantiated" with the actual sequence
letters, and are assigned identifiers (e.g., accession numbers) for reference.

Each sequence can have multiple features, which contain information about the biology of a given region,
including the transformations involved in gene expression. Each feature can have multiple qualifiers, which store
specific details about that feature (e.g., name of the gene, genetic code used for protein translation, accession of
the product sequence, cross-references to external databases).

92 Entrez Programming Utilities Help

A gene feature indicates the location of a heritable region of nucleic acid that confers a measurable phenotype.
An mRNA feature on genomic DNA represents the exonic and untranslated regions of the message that remain
after transcription and splicing. A coding region (CDS) feature has a product reference to the translated protein.

Since messenger RNA sequences are not always submitted with a genomic region, CDS features (which model
the travel of ribosomes on transcript molecules) are traditionally annotated on the genomic sequence, with
locations that encode the exonic intervals.

A qualifier can be dynamically generated from underlying data for the convenience of the user. Thus, the
sequence of a mature peptide may be extracted from the mat_peptide feature's location on the precursor protein
and displayed in a /peptide qualifier, even if a mature peptide is not instantiated.

Sequence Records in INSDSeq XML
Sequence records can be retrieved in an XML version of the GenBank or GenPept flatfile. The query:

 efetch -db protein -id 26418308,26418074 -format gpc

Entrez Direct: E-utilities on the Unix Command Line 93

returns a set of INSDSeq objects:

 <INSDSet>
 <INSDSeq>
 <INSDSeq_locus>AAN78128</INSDSeq_locus>
 <INSDSeq_length>17</INSDSeq_length>
 <INSDSeq_moltype>AA</INSDSeq_moltype>
 <INSDSeq_topology>linear</INSDSeq_topology>
 <INSDSeq_division>INV</INSDSeq_division>
 <INSDSeq_update-date>03-JAN-2003</INSDSeq_update-date>
 <INSDSeq_create-date>10-DEC-2002</INSDSeq_create-date>
 <INSDSeq_definition>alpha-conotoxin ImI precursor, partial [Conus
 imperialis]</INSDSeq_definition>
 <INSDSeq_primary-accession>AAN78128</INSDSeq_primary-accession>
 <INSDSeq_accession-version>AAN78128.1</INSDSeq_accession-version>
 <INSDSeq_other-seqids>
 <INSDSeqid>gb|AAN78128.1|</INSDSeqid>
 <INSDSeqid>gi|26418308</INSDSeqid>
 </INSDSeq_other-seqids>
 <INSDSeq_source>Conus imperialis</INSDSeq_source>
 <INSDSeq_organism>Conus imperialis</INSDSeq_organism>
 <INSDSeq_taxonomy>Eukaryota; Metazoa; Lophotrochozoa; Mollusca;
 Gastropoda; Caenogastropoda; Hypsogastropoda; Neogastropoda;
 Conoidea; Conidae; Conus</INSDSeq_taxonomy>
 <INSDSeq_references>
 <INSDReference>
 ...

Biological features and qualifiers (shown here in GenPept format):

 FEATURES Location/Qualifiers
 source 1..17
 /organism="Conus imperialis"
 /db_xref="taxon:35631"
 /country="Philippines"
 Protein <1..17
 /product="alpha-conotoxin ImI precursor"
 mat_peptide 5..16
 /product="alpha-conotoxin ImI"
 /note="the C-terminal glycine of the precursor is post
 translationally removed"
 /calculated_mol_wt=1357
 /peptide="GCCSDPRCAWRC"
 CDS 1..17
 /coded_by="AY159318.1:<1..54"
 /note="nAChR antagonist"

are presented in INSDSeq XML as structured objects:

 ...
 <INSDFeature>
 <INSDFeature_key>mat_peptide</INSDFeature_key>
 <INSDFeature_location>5..16</INSDFeature_location>
 <INSDFeature_intervals>
 <INSDInterval>
 <INSDInterval_from>5</INSDInterval_from>
 <INSDInterval_to>16</INSDInterval_to>
 <INSDInterval_accession>AAN78128.1</INSDInterval_accession>
 </INSDInterval>
 </INSDFeature_intervals>

94 Entrez Programming Utilities Help

 <INSDFeature_quals>
 <INSDQualifier>
 <INSDQualifier_name>product</INSDQualifier_name>
 <INSDQualifier_value>alpha-conotoxin ImI</INSDQualifier_value>
 </INSDQualifier>
 <INSDQualifier>
 <INSDQualifier_name>note</INSDQualifier_name>
 <INSDQualifier_value>the C-terminal glycine of the precursor is
 post translationally removed</INSDQualifier_value>
 </INSDQualifier>
 <INSDQualifier>
 <INSDQualifier_name>calculated_mol_wt</INSDQualifier_name>
 <INSDQualifier_value>1357</INSDQualifier_value>
 </INSDQualifier>
 <INSDQualifier>
 <INSDQualifier_name>peptide</INSDQualifier_name>
 <INSDQualifier_value>GCCSDPRCAWRC</INSDQualifier_value>
 </INSDQualifier>
 </INSDFeature_quals>
 </INSDFeature>
 ...

The data hierarchy is easily explored using a ‑pattern {sequence} ‑group {feature} ‑block {qualifier} construct.
However, feature and qualifier names are indicated in data values, not XML element tags, and require ‑if and
‑equals to select the desired object and content.

Generating Qualifier Extraction Commands
As a convenience for exploring sequence records, the xtract ‑insd helper function generates the appropriate
nested extraction commands from feature and qualifier names on the command line. (Two computed qualifiers,
sub_sequence and feat_location, are also supported.)

Running xtract ‑insd in an isolated command prints a new xtract statement that can then be copied, edited if
necessary, and pasted into other queries. Running the ‑insd command within a multi-step pipe dynamically
executes the automatically-constructed query.

Providing an optional (complete/partial) location indication, a feature key, and then one or more qualifier
names:

 xtract -insd complete mat_peptide product peptide

creates a new xtract statement that will produce a table of qualifier values from mature peptide features with
complete locations. The statement starts with instructions to record the accession and find features of the
indicated type:

 xtract -pattern INSDSeq -ACCN INSDSeq_accession-version -SEQ INSDSeq_sequence \
 -group INSDFeature -if INSDFeature_key -equals mat_peptide \
 -branch INSDFeature -unless INSDFeature_partial5 -or INSDFeature_partial3 \
 -clr -pfx "\n" -element "&ACCN" \

Each qualifier then generates custom extraction code that is appended to the growing query. For example:

 -block INSDQualifier \
 -if INSDQualifier_name -equals product \
 -element INSDQualifier_value

Entrez Direct: E-utilities on the Unix Command Line 95

Snail Venom Peptide Sequences
Incorporating the xtract ‑insd command in a search on cone snail venom:

 esearch -db pubmed -query "conotoxin" |
 elink -target protein |
 efilter -query "mat_peptide [FKEY]" |
 efetch -format gpc |
 xtract -insd complete mat_peptide "%peptide" product mol_wt peptide |

prints the accession number, mature peptide length, product name, calculated molecular weight, and amino acid
sequence for a sample of neurotoxic peptides:

 AAN78128.1 12 alpha-conotoxin ImI 1357 GCCSDPRCAWRC
 ADB65789.1 20 conotoxin Cal 16 2134 LEMQGCVCNANAKFCCGEGR
 ADB65788.1 20 conotoxin Cal 16 2134 LEMQGCVCNANAKFCCGEGR
 AGO59814.1 32 del13b conotoxin 3462 DCPTSCPTTCANGWECCKGYPCVRQHCSGCNH
 AAO33169.1 16 alpha-conotoxin GIC 1615 GCCSHPACAGNNQHIC
 AAN78279.1 21 conotoxin Vx-II 2252 WIDPSHYCCCGGGCTDDCVNC
 AAF23167.1 31 BeTX toxin 3433 CRAEGTYCENDSQCCLNECCWGGCGHPCRHP
 ABW16858.1 15 marmophin 1915 DWEYHAHPKPNSFWT
 ...

Piping the results to a series of Unix commands and EDirect scripts:

 grep -i conotoxin |
 filter-columns '10 <= $2 && $2 <= 30' |
 sort-table -u -k 5 |
 sort-table -k 2,2n |
 align-columns -

filters by product name, limits the results to a specified range of peptide lengths, removes redundant sequences,
sorts the table by peptide length, and aligns the columns for cleaner printing:

 AAN78127.1 12 alpha-conotoxin ImII 1515 ACCSDRRCRWRC
 AAN78128.1 12 alpha-conotoxin ImI 1357 GCCSDPRCAWRC
 ADB43130.1 15 conotoxin Cal 1a 1750 KCCKRHHGCHPCGRK
 ADB43131.1 15 conotoxin Cal 1b 1708 LCCKRHHGCHPCGRT
 AAO33169.1 16 alpha-conotoxin GIC 1615 GCCSHPACAGNNQHIC
 ADB43128.1 16 conotoxin Cal 5.1 1829 DPAPCCQHPIETCCRR
 AAD31913.1 18 alpha A conotoxin Tx2 2010 PECCSHPACNVDHPEICR
 ADB43129.1 18 conotoxin Cal 5.2 2008 MIQRSQCCAVKKNCCHVG
 ADB65789.1 20 conotoxin Cal 16 2134 LEMQGCVCNANAKFCCGEGR
 ADD97803.1 20 conotoxin Cal 1.2 2206 AGCCPTIMYKTGACRTNRCR
 AAD31912.1 21 alpha A conotoxin Tx1 2304 PECCSDPRCNSSHPELCGGRR
 AAN78279.1 21 conotoxin Vx-II 2252 WIDPSHYCCCGGGCTDDCVNC
 ADB43125.1 22 conotoxin Cal 14.2 2157 GCPADCPNTCDSSNKCSPGFPG
 ADD97802.1 23 conotoxin Cal 6.4 2514 GCWLCLGPNACCRGSVCHDYCPR
 AAD31915.1 24 O-superfamily conotoxin TxO2 2565 CYDSGTSCNTGNQCCSGWCIFVCL
 AAD31916.1 24 O-superfamily conotoxin TxO3 2555 CYDGGTSCDSGIQCCSGWCIFVCF
 AAD31920.1 24 omega conotoxin SVIA mutant 1 2495 CRPSGSPCGVTSICCGRCYRGKCT
 AAD31921.1 24 omega conotoxin SVIA mutant 2 2419 CRPSGSPCGVTSICCGRCSRGKCT
 ABE27006.1 25 conotoxin p114a 2917 FPRPRICNLACRAGIGHKYPFCHCR
 ABE27007.1 25 conotoxin p114.1 2645 GPGSAICNMACRLGQGHMYPFCNCN
 ...

The xtract ‑insdx variant:

 esearch -db protein -query "conotoxin" |
 efilter -query "mat_peptide [FKEY]" |

96 Entrez Programming Utilities Help

 efetch -format gpc |
 xtract -insdx complete mat_peptide "%peptide" product mol_wt peptide |
 xtract -pattern Rec -select product -contains conotoxin |
 xtract -pattern Rec -sort mol_wt

saves the output table directly as XML, with the XML tag names taken from the original qualifier names:

 ...
 <Rec>
 <accession>AAO33169.1</accession>
 <feature_key>mat_peptide</feature_key>
 <peptide_Len>16</peptide_Len>
 <product>alpha-conotoxin GIC</product>
 <mol_wt>1615</mol_wt>
 <peptide>GCCSHPACAGNNQHIC</peptide>
 </Rec>
 <Rec>
 <accession>AIC77099.1</accession>
 <feature_key>mat_peptide</feature_key>
 <peptide_Len>16</peptide_Len>
 <product>conotoxin Im1.2</product>
 <mol_wt>1669</mol_wt>
 <peptide>GCCSHPACNVNNPHIC</peptide>
 </Rec>
 ...

Qualifier names with prefix shortcuts "#" and "%" are modified to use "_Num" and "_Len" suffixes, respectively.

Missing Qualifiers
For records where a particular qualifier is missing:

 esearch -db protein -query "RAG1 [GENE] AND Mus musculus [ORGN]" |
 efetch -format gpc |
 xtract -insd source organism strain |
 sort-table -u -k 2,3

a dash is inserted as a placeholder:

 P15919.2 Mus musculus -
 AAO61776.1 Mus musculus 129/Sv
 NP_033045.2 Mus musculus C57BL/6
 EDL27655.1 Mus musculus mixed
 BAD69530.1 Mus musculus castaneus -
 BAD69531.1 Mus musculus domesticus BALB/c
 BAD69532.1 Mus musculus molossinus MOA

Sequence Coordinates

Gene Positions
An understanding of sequence coordinate conventions is necessary in order to use gene positions to retrieve the
corresponding chromosome subregion with efetch or with the UCSC browser.

Sequence records displayed in GenBank or GenPept formats use a "one-based" coordinate system, with sequence
position numbers starting at "1":

 1 catgccattc gttgagttgg aaacaaactt gccggctagc cgcatacccg cggggctgga
 61 gaaccggctg tgtgcggcca cagccaccat cctggacaaa cccgaagacg tgagtgaggg

Entrez Direct: E-utilities on the Unix Command Line 97

 121 tcggcgagaa cttgtgggct agggtcggac ctcccaatga cccgttccca tccccaggga
 181 ccccactccc ctggtaacct ctgaccttcc gtgtcctatc ctcccttcct agatcccttc
 ...

Under this convention, positions refer to the sequence letters themselves:

 C A T G C C A T T C
 1 2 3 4 5 6 7 8 9 10

and the position of the last base or residue is equal to the length of the sequence. The ATG initiation codon
above is at positions 2 through 4, inclusive.

For computer programs, however, using "zero-based" coordinates can simplify the arithmetic used for
calculations on sequence positions. The ATG codon in the 0-based representation is at positions 1 through 3.
(The UCSC browser uses a hybrid, half-open representation, where the start position is 0-based and the stop
position is 1-based.)

Software at NCBI will typically convert positions to 0-based coordinates upon input, perform whatever
calculations are desired, and then convert the results to a 1-based representation for display. These
transformations are done by simply subtracting 1 from the 1-based value or adding 1 to the 0-based value.

Coordinate Conversions
Retrieving the docsum for a particular gene:

 esearch -db gene -query "BRCA2 [GENE] AND human [ORGN]" |
 efetch -format docsum |

returns the chromosomal position of that gene in "zero-based" coordinates:

 ...
 <GenomicInfoType>
 <ChrLoc>13</ChrLoc>
 <ChrAccVer>NC_000013.11</ChrAccVer>
 <ChrStart>32315479</ChrStart>
 <ChrStop>32399671</ChrStop>
 <ExonCount>27</ExonCount>
 </GenomicInfoType>
 ...

Piping the document summary to an xtract command using ‑element:

 xtract -pattern GenomicInfoType -element ChrAccVer ChrStart ChrStop

obtains the accession and 0-based coordinate values:

 NC_000013.11 32315479 32399671

Efetch has ‑seq_start and ‑seq_stop arguments to retrieve a gene segment, but these expect the sequence
subrange to be in 1-based coordinates.

To address this problem, two additional efetch arguments, ‑chr_start and ‑chr_stop, were created to allow
direct use of the 0-based coordinates:

 efetch -db nuccore -format gb -id NC_000013.11 \
 -chr_start 32315479 -chr_stop 32399671

Xtract now has numeric extraction commands to assist with coordinate conversion. Selecting fields with an ‑inc
argument:

98 Entrez Programming Utilities Help

 xtract -pattern GenomicInfoType -element ChrAccVer -inc ChrStart ChrStop

obtains the accession and 0-based coordinates, then increments the positions to produce 1-based values:

 NC_000013.11 32315480 32399672

EDirect knows the policies for sequence positions in all relevant Entrez databases (e.g., gene, snp, dbvar), and
provides additional shortcuts for converting these to other conventions. For example:

 xtract -pattern GenomicInfoType -element ChrAccVer -1-based ChrStart ChrStop

understands that gene docsum ChrStart and ChrStop fields are 0-based, sees that the desired output is 1-based,
and translates the command to convert coordinates internally using the ‑inc logic. Similarly:

 -element ChrAccVer -ucsc-based ChrStart ChrStop

leaves the 0-based start value unchanged but increments the original stop value to produce the half-open form
that can be passed to the UCSC browser:

 NC_000013.11 32315479 32399672

Gene Records

Genes in a Region
To list all genes between two markers flanking the human X chromosome centromere, first retrieve the protein-
coding gene records on that chromosome:

 esearch -db gene -query "Homo sapiens [ORGN] AND X [CHR]" |
 efilter -status alive -type coding | efetch -format docsum |

Gene names and chromosomal positions are extracted by piping the records to:

 xtract -pattern DocumentSummary -NAME Name -DESC Description \
 -block GenomicInfoType -if ChrLoc -equals X \
 -min ChrStart,ChrStop -element "&NAME" "&DESC" |

Exploring each GenomicInfoType is needed because of pseudoautosomal regions at the ends of the X and Y
chromosomes:

 ...
 <GenomicInfo>
 <GenomicInfoType>
 <ChrLoc>X</ChrLoc>
 <ChrAccVer>NC_000023.11</ChrAccVer>
 <ChrStart>155997630</ChrStart>
 <ChrStop>156013016</ChrStop>
 <ExonCount>14</ExonCount>
 </GenomicInfoType>
 <GenomicInfoType>
 <ChrLoc>Y</ChrLoc>
 <ChrAccVer>NC_000024.10</ChrAccVer>
 <ChrStart>57184150</ChrStart>
 <ChrStop>57199536</ChrStop>
 <ExonCount>14</ExonCount>
 </GenomicInfoType>
 </GenomicInfo>
 ...

Entrez Direct: E-utilities on the Unix Command Line 99

Without limiting to chromosome X, the copy of IL9R near the "q" telomere of chromosome Y would be
erroneously placed with genes that are near the X chromosome centromere, shown here in between SPIN2A and
ZXDB:

 ...
 57121860 FAAH2 fatty acid amide hydrolase 2
 57133042 SPIN2A spindlin family member 2A
 57184150 IL9R interleukin 9 receptor
 57592010 ZXDB zinc finger X-linked duplicated B
 ...

With genes restricted to the X chromosome, results can be sorted by position, and then filtered and partitioned:

 sort-table -k 1,1n | cut -f 2- |
 grep -v pseudogene | grep -v uncharacterized | grep -v hypothetical |
 between-two-genes AMER1 FAAH2

to produce an ordered table of known genes located between the two markers:

 FAAH2 fatty acid amide hydrolase 2
 SPIN2A spindlin family member 2A
 ZXDB zinc finger X-linked duplicated B
 NLRP2B NLR family pyrin domain containing 2B
 ZXDA zinc finger X-linked duplicated A
 SPIN4 spindlin family member 4
 ARHGEF9 Cdc42 guanine nucleotide exchange factor 9
 AMER1 APC membrane recruitment protein 1

Gene Sequence
Genes encoded on the minus strand of a sequence:

 esearch -db gene -query "DDT [GENE] AND mouse [ORGN]" |
 efetch -format docsum |
 xtract -pattern GenomicInfoType -element ChrAccVer ChrStart ChrStop |

have coordinates ("zero-based" in docsums) where the start position is greater than the stop:

 NC_000076.6 75773373 75771232

These values can be read into Unix variables by a "while" loop:

 while IFS=$'\t' read acn str stp
 do
 efetch -db nuccore -format gb \
 -id "$acn" -chr_start "$str" -chr_stop "$stp"
 done

The variables can then be used to obtain the reverse-complemented subregion in GenBank format:

 LOCUS NC_000076 2142 bp DNA linear CON 08-AUG-2019
 DEFINITION Mus musculus strain C57BL/6J chromosome 10, GRCm38.p6 C57BL/6J.
 ACCESSION NC_000076 REGION: complement(75771233..75773374)
 ...
 gene 1..2142
 /gene="Ddt"
 mRNA join(1..159,462..637,1869..2142)
 /gene="Ddt"
 /product="D-dopachrome tautomerase"
 /transcript_id="NM_010027.1"
 CDS join(52..159,462..637,1869..1941)

100 Entrez Programming Utilities Help

 /gene="Ddt"
 /codon_start=1
 /product="D-dopachrome decarboxylase"
 /protein_id="NP_034157.1"
 /translation="MPFVELETNLPASRIPAGLENRLCAATATILDKPEDRVSVTIRP
 GMTLLMNKSTEPCAHLLVSSIGVVGTAEQNRTHSASFFKFLTEELSLDQDRIVIRFFP
 ...

The reverse complement of a plus-strand sequence range can be selected with efetch ‑revcomp

External Data

Querying External Services
The nquire program uses command-line arguments to obtain data from RESTful, CGI, or FTP servers. Queries
are built up from command-line arguments. Paths can be separated into components, which are combined with
slashes. Remaining arguments (starting with a dash) are tag/value pairs, with multiple values between tags
combined with commas.

For example, a POST request:

 nquire -url http://w1.weather.gov/xml/current_obs/KSFO.xml |
 xtract -pattern current_observation -tab "\n" \
 -element weather temp_f wind_dir wind_mph

returns the current weather report at the San Francisco airport:

 A Few Clouds
 54.0
 Southeast
 5.8

and a GET query:

 nquire -get http://collections.mnh.si.edu/services/resolver/resolver.php \
 -voucher "Birds:321082" |
 xtract -pattern Result -tab "\n" -element ScientificName StateProvince Country

returns information on a ruby-throated hummingbird specimen:

 Archilochus colubris
 Maryland
 United States

while an FTP request:

 nquire -ftp ftp.ncbi.nlm.nih.gov pub/gdp ideogram_9606_GCF_000001305.14_850_V1 |
 grep acen | cut -f 1,2,6,7 | awk '/^X\t/'

returns data with the (estimated) sequence coordinates of the human X chromosome centromere (here showing
where the p and q arms meet):

 X p 58100001 61000000
 X q 61000001 63800000

Nquire can also produce a list of files in an FTP server directory:

 nquire -lst ftp://nlmpubs.nlm.nih.gov online/mesh/MESH_FILES/xmlmesh

or a list of FTP file names preceded by a column with the file sizes:

Entrez Direct: E-utilities on the Unix Command Line 101

 nquire -dir ftp.ncbi.nlm.nih.gov gene/DATA

Finally, nquire can download FTP files to the local disk:

 nquire -dwn ftp.nlm.nih.gov online/mesh/MESH_FILES/xmlmesh desc2021.zip

If Aspera Connect is installed, the nquire ‑asp command will provide faster retrieval from NCBI servers:

 nquire -asp ftp.ncbi.nlm.nih.gov pubmed baseline pubmed22n0001.xml.gz

Without Aspera Connect, nquire ‑asp defaults to using the ‑dwn logic.

XML Namespaces
Namespace prefixes are followed by a colon, while a leading colon matches any prefix:

 nquire -url http://webservice.wikipathways.org getPathway -pwId WP455 |
 xtract -pattern "ns1:getPathwayResponse" -decode ":gpml" |

The embedded Graphical Pathway Markup Language object can then be processed:

 xtract -pattern Pathway -block Xref \
 -if @Database -equals "Entrez Gene" \
 -tab "\n" -element @ID

Automatic Xtract Format Conversion
Xtract can now detect and convert input data in JSON, text ASN.1, and GenBank/GenPept flatfile formats. The
transmute commands or shortcut scripts, described below, are only needed if you want to inspect the
intermediate XML, or to override default conversion settings.

JSON Arrays
Consolidated gene information for human β-globin retrieved from a curated biological database service
developed at the Scripps Research Institute:

 nquire -get http://mygene.info/v3 gene 3043 |

contains a multi-dimensional array of exon coordinates in JavaScript Object Notation (JSON) format:

 "position": [
 [
 5225463,
 5225726
],
 [
 5226576,
 5226799
],
 [
 5226929,
 5227071
]
],
 "strand": -1,

This can be converted to XML with transmute ‑j2x (or the json2xml shortcut script):

 transmute -j2x |

with the default"‑nest element" argument assigning distinct tag names to each level:

102 Entrez Programming Utilities Help

 <position>
 <position_E>5225463</position_E>
 <position_E>5225726</position_E>
 </position>
 ...

JSON Mixtures
A query for the human green-sensitive opsin gene:

 nquire -get http://mygene.info/v3/gene/2652 |
 transmute -j2x |

returns data containing a heterogeneous mixture of objects in the pathway section:

 <pathway>
 <reactome>
 <id>R-HSA-162582</id>
 <name>Signal Transduction</name>
 </reactome>
 ...
 <wikipathways>
 <id>WP455</id>
 <name>GPCRs, Class A Rhodopsin-like</name>
 </wikipathways>
 </pathway>

The parent / star construct is used to visit the individual components of a parent object without needing to
explicitly specify their names. For printing, the name of a child object is indicated by a question mark:

 xtract -pattern opt -group "pathway/*" \
 -pfc "\n" -element "?,name,id"

This displays a table of pathway database references:

 reactome Signal Transduction R-HSA-162582
 reactome Disease R-HSA-1643685
 ...
 reactome Diseases of the neuronal system R-HSA-9675143
 wikipathways GPCRs, Class A Rhodopsin-like WP455

Xtract ‑path can explore using multi-level object addresses, delimited by periods or slashes:

 xtract -pattern opt -path pathway.wikipathways.id -tab "\n" -element id

Conversion of ASN.1
Similarly to ‑j2x, transmute ‑a2x (or asn2xml) will convert Abstract Syntax Notation 1 (ASN.1) text files to
XML.

Tables to XML
Tab-delimited files are easily converted to XML with transmute ‑t2x (or tbl2xml):

 nquire -ftp ftp.ncbi.nlm.nih.gov gene/DATA gene_info.gz |
 gunzip -c | grep -v NEWENTRY | cut -f 2,3 |
 transmute -t2x -set Set -rec Rec -skip 1 Code Name

This takes a series of command-line arguments with tag names for wrapping the individual columns, and skips
the first line of input, which contains header information, to generate a new XML file:

Entrez Direct: E-utilities on the Unix Command Line 103

 ...
 <Rec>
 <Code>1246500</Code>
 <Name>repA1</Name>
 </Rec>
 <Rec>
 <Code>1246501</Code>
 <Name>repA2</Name>
 </Rec>
 ...

The transmute ‑t2x ‑header argument will obtain tag names from the first line of the file:

 nquire -ftp ftp.ncbi.nlm.nih.gov gene/DATA gene_info.gz |
 gunzip -c | grep -v NEWENTRY | cut -f 2,3 |
 transmute -t2x -set Set -rec Rec -header

CSV to XML
Similarly to ‑t2x, transmute ‑c2x (or csv2xml) will convert comma-separated values (CSV) files to XML.

GenBank Download
The entire set of GenBank format release files be downloaded with:

 fls=$(nquire -lst ftp.ncbi.nlm.nih.gov genbank)
 for div in \
 bct con env est gss htc htg inv mam pat \
 phg pln pri rod sts syn tsa una vrl vrt
 do
 echo "$fls" |
 grep ".seq.gz" | grep "gb${div}" |
 sort -V | skip-if-file-exists |
 nquire -asp ftp.ncbi.nlm.nih.gov genbank
 done

Unwanted divisions can be removed from the "for" loop to limit retrieval to specific sequencing classes or
taxonomic regions.

GenBank to XML
The most recent GenBank virus release file can also be downloaded from NCBI servers:

 nquire -lst ftp.ncbi.nlm.nih.gov genbank |
 grep "^gbvrl" | grep ".seq.gz" | sort -V |
 tail -n 1 | skip-if-file-exists |
 nquire -asp ftp.ncbi.nlm.nih.gov genbank

GenBank flatfile records can be selected by organism name or taxon identifier, or by presence or absence of an
arbitrary text string, with transmute ‑gbf (or filter-genbank):

 gunzip -c *.seq.gz | filter-genbank -taxid 11292 |

Since xtract can now read JSON, ASN.1, and GenBank formats, the filtered flatfiles can be piped to xtract to
obtain feature location intervals and underlying sequences of individual coding regions:

 xtract -insd CDS gene product feat_location sub_sequence

without the need for an explicit transmute ‑g2x (or gbf2xml) step.

104 Entrez Programming Utilities Help

GenPept to XML
The latest GenPept daily incremental update file can be downloaded:

 nquire -ftp ftp.ncbi.nlm.nih.gov genbank daily-nc Last.File |
 sed "s/flat/gnp/g" |
 nquire -ftp ftp.ncbi.nlm.nih.gov genbank daily-nc |
 gunzip -c | transmute -g2x |

and the extracted INSDSeq XML can be processed in a similar manner:

 xtract -pattern INSDSeq -select INSDQualifier_value -equals "taxon:2697049" |
 xtract -insd mat_peptide product sub_sequence

Local PubMed Cache
Fetching data from Entrez works well when a few thousand records are needed, but it does not scale for much
larger sets of data, where the time it takes to download becomes a limiting factor.

Recent advances in technology provide an affordable and practical alternative. High-performance NVMe solid-
state drives (which eliminate rotational delays for file access and bookkeeping operations) are readily available
for purchase. Modern high-capacity file systems, such as APFS (which uses 64-bit inodes) or Ext4 (which can be
configured for 100 million inodes), are now ubiquitous on contemporary computers. A judicious arrangement of
multi-level nested directories (each containing no more than 100 subfolders or record files) ensures maximally-
efficient use of these enhanced capabilities.

This combination of features allows local record storage (populated in advance from the PubMed FTP release
files) to be an effective replacement for on-demand network retrieval, while avoiding the need to install and
support a legacy database product on your computer.

Random Access Archive
EDirect can now preload over 35 million live PubMed records onto an inexpensive external 500 GB (gigabyte)
solid-state drive as individual files for rapid retrieval. For example, PMID 2539356 would be stored at:

 /pubmed/Archive/02/53/93/2539356.xml.gz

using a hierarchy of folders to organize the data for random access to any record.

The local archive is a completely self-contained turnkey system, with no need for the user to download,
configure, and maintain complicated third-party database software.

Set an environment variable in your configuration file(s) to reference a section of your external drive:

 export EDIRECT_LOCAL_ARCHIVE=/Volumes/external_drive_name/

or set separate environment variables to keep the intermediate steps on the external SSD but leave the resulting
archive in a designated area of the computer's internal storage:

 export EDIRECT_LOCAL_ARCHIVE=$HOME/internal_directory_name/
 export EDIRECT_LOCAL_WORKING=/Volumes/external_drive_name/

In the latter case it will store around 180 GB on the internal drive for the local archive, or up to 250 GB if the
local search index (see below) is also built.

Then run archive-pubmed to download the PubMed release files and distribute each record on the drive. This
process will take several hours to complete, but subsequent updates are incremental, and should finish in
minutes.

Entrez Direct: E-utilities on the Unix Command Line 105

Retrieving over 125,000 compressed PubMed records from the local archive:

 esearch -db pubmed -query "PNAS [JOUR]" -pub abstract |
 efetch -format uid | stream-pubmed | gunzip -c |

takes about 20 seconds. Retrieving those records from NCBI's network service, with efetch ‑format xml, would
take around 40 minutes.

Even modest sets of PubMed query results can benefit from using the local cache. A reverse citation lookup on
191 papers:

 esearch -db pubmed -query "Cozzarelli NR [AUTH]" | elink -cited |

requires 13 seconds to match 9620 subsequent articles. Retrieving them from the local archive:

 efetch -format uid | fetch-pubmed |

takes less than one second. Printing the names of all authors in those records:

 xtract -pattern PubmedArticle -block Author \
 -sep " " -tab "\n" -element LastName,Initials |

allows creation of a frequency table:

 sort-uniq-count-rank

that lists the authors who most often cited the original papers:

 145 Cozzarelli NR
 108 Maxwell A
 86 Wang JC
 81 Osheroff N
 ...

Fetching from the network service would extend the 14 second running time to over 2 minutes.

Local Search Index
A similar divide-and-conquer strategy is used to create a local information retrieval system suitable for large
data mining queries. Run archive-pubmed ‑index to populate retrieval index files from records stored in the
local archive. The initial indexing will also take a few hours. Since PubMed updates are released once per day, it
may be convenient to schedule reindexing to start in the late evening and run during the night.

For PubMed titles and primary abstracts, the indexing process deletes hyphens after specific prefixes, removes
accents and diacritical marks, splits words at punctuation characters, corrects encoding artifacts, and spells out
Greek letters for easier searching on scientific terms. It then prepares inverted indices with term positions, and
uses them to build distributed term lists and postings files.

For example, the term list that includes "cancer" in the title or abstract would be located at:

 /pubmed/Postings/TIAB/c/a/n/c/canc.TIAB.trm

A query on cancer thus only needs to load a very small subset of the total index. The software supports
expression evaluation, wildcard truncation, phrase queries, and proximity searches.

The phrase-search script (with an implied ‑db pubmed) provides access to the local search system.

Names of indexed fields, all terms for a given field, and terms plus record counts, are shown by:

 phrase-search -fields

106 Entrez Programming Utilities Help

 phrase-search -terms TITL

 phrase-search -totals PROP

Terms are truncated with trailing asterisks, and can be expanded to show individual postings counts:

 phrase-search -count "catabolite repress*"

 phrase-search -counts "catabolite repress*"

Query evaluation includes Boolean operations and parenthetical expressions:

 phrase-search -query "(literacy AND numeracy) NOT (adolescent OR child)"

Adjacent words in the query are treated as a contiguous phrase:

 phrase-search -query "selective serotonin reuptake inhibitor"

Each plus sign will replace a single word inside a phrase, and runs of tildes indicate the maximum distance
between sequential phrases:

 phrase-search -query "vitamin c + + common cold"

 phrase-search -query "vitamin c ~ ~ common cold"

An exact substring match, without special processing of Boolean operators or indexed field names, can be
obtained with -title (on the article title) or -exact (on the title or abstract), while ranked partial term matching in
any field is available with -match:

 phrase-search -title "Genetic Control of Biochemical Reactions in Neurospora."

 phrase-search -match "tn3 transposition immunity [PAIR]" | just-top-hits 1

MeSH identifier code, MeSH hierarchy key, and year of publication are also indexed, and MESH field queries are
supported by internally mapping to the appropriate CODE or TREE entries:

 phrase-search -query "C14.907.617.812* [TREE] AND 2015:2019 [YEAR]"

 phrase-search -query "Raynaud Disease [MESH]"

The phrase-search ‑filter command allows PMIDs to be generated by an EDirect search and then incorporated
as a component in a local query:

Data Analysis and Visualization
All query commands return a list of PMIDs, which can be piped directly to fetch-pubmed to retrieve the
uncompressed records. For example:

 phrase-search -query "selective serotonin ~ ~ ~ reuptake inhibit*" |
 fetch-pubmed |
 xtract -pattern PubmedArticle -num AuthorList/Author |
 sort-uniq-count -n |
 reorder-columns 2 1 |
 head -n 25 |
 align-columns -g 4 -a lr

performs a proximity search with dynamic wildcard expansion (matching phrases like "selective serotonin and
norepinephrine reuptake inhibitors") and fetches 12,966 PubMed records from the local archive. It then counts
the number of authors for each paper (a consortium is treated as a single author), printing a frequency table of
the number of papers per number of authors:

Entrez Direct: E-utilities on the Unix Command Line 107

 0 51
 1 1382
 2 1897
 3 1906
 ...

The phrase-search and fetch-pubmed scripts are front-ends to the rchive program, which is used to build and
search the inverted retrieval system. Rchive is multi-threaded for speed, retrieving records from the local archive
in parallel, and fetching the positional indices for all terms in parallel before evaluating the title words as a
contiguous phrase.

The cumulative size of PubMed can be calculated with a running sum of the annual record counts. Exponential
growth over time will appear as a roughly linear curve on a semi-logarithmic graph:

 phrase-search -totals YEAR |
 print-columns '$2, $1, total += $1' |
 print-columns '$1, log($2)/log(10), log($3)/log(10)' |
 ilter-columns '$1 >= 1800 && $1 < YR' |
 xy-plot annual-and-cumulative.png

Natural Language Processing
NCBI's Biomedical Text Mining Group performs computational analysis to extract chemical, disease, and gene
references from article contents. NLM indexing of PubMed records assigns Gene Reference into Function
(GeneRIF) mappings.

Running archive-ncbinlp ‑index periodically (monthly) will automatically refresh any out-of-date support files
and then index the connections in CHEM, DISZ, GENE, and several gene subfields (GRIF, GSYN, and PREF):

 phrase-search -terms DISZ | grep -i Raynaud

 phrase-search -counts "Raynaud* [DISZ]"

 phrase-search -query "Raynaud Disease [DISZ]"

Following Citation Links
Running archive-nihocc ‑index will download the latest NIH Open Citation Collection monthly release and
build CITED and CITES indices, the local equivalent of elink ‑cited and ‑cites commands.

Citation links are retrieved by piping one or more PMIDs to phrase-search ‑link:

 phrase-search -db pubmed -query "Havran W* [AUTH]" |
 phrase-search -link CITED |

This returns PMIDs for 6504 articles that cite the original 96 papers. The records are then fetched and analyzed:

 fetch-pubmed |
 xtract -pattern PubmedArticle -histogram Journal/ISOAbbreviation |
 sort-table -nr | head -n 10

to display the most popular journals in which the subsequent articles were published:

 921 J Immunol
 293 Eur J Immunol
 248 J Exp Med
 168 Front Immunol
 149 Proc Natl Acad Sci U S A
 139 Cell Immunol

108 Entrez Programming Utilities Help

 121 Int Immunol
 106 J Invest Dermatol
 105 Immunol Rev
 99 Immunity

Rapidly Scanning PubMed
If the expand-current script is run, an ad hoc scan can be performed on the nonredundant set of live PubMed
records:

 cat $EDIRECT_LOCAL_WORKING/pubmed/Scratch/Current/*.xml |
 xtract -timer -turbo -pattern PubmedArticle -PMID MedlineCitation/PMID \
 -group AuthorList -if "#LastName" -eq 7 -element "&PMID" LastName

finding 1,700,652 articles with seven authors. (This query excludes consortia and additional named investigators.
Author count is now indexed in the ANUM field.)

Xtract uses the Boyer-Moore-Horspool algorithm to partition an XML stream into individual records,
distributing them among multiple instances of the data exploration and extraction function for concurrent
execution. A multi-core computer with a solid-state drive can process all of PubMed in under 4 minutes.

The expand-current script now calls xtract -index to place an XML size object immediately before each PubMed
record:

 ...
 </PubmedArticle>
 <NEXT_RECORD_SIZE>6374</NEXT_RECORD_SIZE>
 <PubmedArticle>
 ...

The xtract ‑turbo flag reads this precomputed information to approximately double the speed of record
partitioning, which is the rate-limiting step when many CPU cores are available. With proper cooling, it should
allow up to a dozen cores to contribute to batch data extraction throughput.

User-Specified Term Index
Running custom-index with a PubMed indexer script and the names of the fields it populates:

 custom-index $(which idx-grant) GRNT

integrates user-specified indices into the local search system. The idx-grant script:

 xtract -set IdxDocumentSet -rec IdxDocument -pattern PubmedArticle \
 -wrp IdxUid -element MedlineCitation/PMID -clr -rst -tab "" \
 -group PubmedArticle -pkg IdxSearchFields \
 -block PubmedArticle -wrp GRNT -element Grant/GrantID

has reusable boilerplate in its first three lines, and indexes PubMed records by Grant Identifier:

 ...
 <IdxDocument>
 <IdxUid>2539356</IdxUid>
 <IdxSearchFields>
 <GRNT>AI 00468</GRNT>
 <GRNT>GM 07197</GRNT>
 <GRNT>GM 29067</GRNT>
 </IdxSearchFields>
 </IdxDocument>
 ...

Entrez Direct: E-utilities on the Unix Command Line 109

Once the final inversion:

 ...
 <InvDocument>
 <InvKey>ai 00468</InvKey>
 <InvIDs>
 <GRNT>2539356</GRNT>
 </InvIDs>
 </InvDocument>
 <InvDocument>
 <InvKey>gm 07197</InvKey>
 <InvIDs>
 <GRNT>2539356</GRNT>
 </InvIDs>
 </InvDocument>
 <InvDocument>
 <InvKey>gm 29067</InvKey>
 <InvIDs>
 <GRNT>2539356</GRNT>
 </InvIDs>
 </InvDocument>
 ..

and posting steps are completed, the new fields are ready to be searched.

Processing by XML Subset
A query on articles with abstracts published in a chosen journal, retrieved from the local cache, and followed by
a multi-step transformation:

 esearch -db pubmed -query "PNAS [JOUR]" -pub abstract |
 efetch -format uid | fetch-pubmed |
 xtract -stops -rec Rec -pattern PubmedArticle \
 -wrp Year -year "PubDate/*" -wrp Abst -words Abstract/AbstractText |
 xtract -rec Pub -pattern Rec \
 -wrp Year -element Year -wrp Num -num Abst > countsByYear.xml

returns structured data with the year of publication and number of words in the abstract for each record:

 <Pub><Year>2018</Year><Num>198</Num></Pub>
 <Pub><Year>2018</Year><Num>167</Num></Pub>
 <Pub><Year>2018</Year><Num>242</Num></Pub>

(The ">" redirect saves the results to a file.)

The following "for" loop limits the processed query results to one year at a time with xtract ‑select, passing the
relevant subset to a second xtract command:

 for yr in {1960..2021}
 do
 cat countsByYear.xml |
 xtract -set Raw -pattern Pub -select Year -eq "$yr" |
 xtract -pattern Raw -lbl "$yr" -avg Num
 done |

that applies ‑avg to the word counts in order to compute the average number of abstract words per article for the
current year:

 1969 122
 1970 120

110 Entrez Programming Utilities Help

 1971 127
 ...
 2018 207
 2019 207
 2020 208

This result can be saved by redirecting to a file, or it can be piped to:

 tee /dev/tty |
 xy-plot pnas.png

to print the data to the terminal and then display the results in graphical format. The last step should be:

 rm countsByYear.xml

to remove the intermediate file.

Identifier Conversion
The archive-pubmed script also downloads MeSH descriptor information from the NLM FTP server and
generates a conversion file:

 ...
 <Rec>
 <Code>D064007</Code>
 <Name>Ataxia Telangiectasia Mutated Proteins</Name>
 ...
 <Tree>D12.776.157.687.125</Tree>
 <Tree>D12.776.660.720.125</Tree>
 </Rec>
 ...

that can be used for mapping MeSH codes to and from chemical or disease names. For example:

 cat $EDIRECT_LOCAL_ARCHIVE/pubmed/Data/meshconv.xml |
 xtract -pattern Rec \
 -if Name -starts-with "ataxia telangiectasia" \
 -element Code

will return:

 C565779
 C576887
 D001260
 D064007

More information on a MeSH term could be obtained by running:

 efetch -db mesh -id D064007 -format docsum

Integration with Entrez
Use phrase-search -filter to combine the UID results of a search (here followed by a link step) with a local query:

 phrase-search -query "Berg CM [AUTH]" |
 phrase-search -link CITED |
 phrase-search -filter "Transposases [MESH]"

Intermediate lists of PMIDs can be saved to a file and piped (with "cat") into a subsequent phrase-search ‑filter
query. They can also be uploaded to the Entrez history server by piping to epost:

Entrez Direct: E-utilities on the Unix Command Line 111

 epost -db pubmed

or piped directly to efetch.

Solid-State Drive Preparation
To initialize a solid-state drive for hosting the local archive on a Mac, log into an admin account, run Disk
Utility, choose View -> Show All Devices, select the top-level external drive, and press the Erase icon. Set the
Scheme popup to GUID Partition Map, and APFS will appear as a format choice. Set the Format popup to APFS,
enter the desired name for the volume, and click the Erase button.

To finish the drive configuration, disable Spotlight indexing on the drive with:

 sudo mdutil -i off "${EDIRECT_LOCAL_ARCHIVE}"
 sudo mdutil -E "${EDIRECT_LOCAL_ARCHIVE}"

and disable FSEvents logging with:

 sudo touch "${EDIRECT_LOCAL_ARCHIVE}/.fseventsd/no_log"

Also exclude the disk from being backed up by Time Machine or scanned by a virus checker.

Automation

Unix Shell Scripting
A shell script can be used to repeat the same sequence of operations on a number of input values. The Unix shell
is a command interpreter that supports user-defined variables, conditional statements, and repetitive execution
loops. Scripts are usually saved in a file, and referenced by file name.

Comments start with a pound sign ("#") and are ignored. Quotation marks within quoted strings are entered by
"escaping" with a backslash ("\"). Subroutines (functions) can be used to collect common code or simplify the
organization of the script.

Combining Data from Adjacent Lines
Given a tab-delimited file of feature keys and values, where each gene is followed by its coding regions:

 gene matK
 CDS maturase K
 gene ATP2B1
 CDS ATPase 1 isoform 2
 CDS ATPase 1 isoform 7
 gene ps2
 CDS peptide synthetase

the cat command can pipe the file contents to a shell script that reads the data one line at a time:

 #!/bin/bash

 gene=""
 while IFS=$'\t' read feature product
 do
 if ["$feature" = "gene"]
 then
 gene="$product"
 else
 echo "$gene\t$product"

112 Entrez Programming Utilities Help

 fi
 done

The resulting output lines, printed by the echo command, have the gene name and subsequent CDS product
names in separate columns on individual rows:

 matK maturase K
 ATP2B1 ATPase 1 isoform 2
 ATP2B1 ATPase 1 isoform 7
 ps2 peptide synthetase

Dissecting the script, the first line selects the Bash shell on the user's machine:

 #!/bin/bash

The latest gene name is stored in the "gene" variable, which is first initialized to an empty string:

 gene=""

The while command sequentially reads each line of the input file, IFS indicates tab-delimited fields, and read
saves the first field in the "feature" variable and the remaining text in the "product" variable:

 while IFS=$'\t' read feature product

The statements between the do and done commands are executed once for each input line. The if statement
retrieves the current value stored in the feature variable (indicated by placing a dollar sign ($) in front of the
variable name) and compares it to the word "gene":

 if ["$feature" = "gene"]

If the feature key was "gene", it runs the then section, which copies the contents of the current line's "product"
value into the persistent "gene" variable:

 then
 gene="$product"

Otherwise the else section prints the saved gene name and the current coding region product name:

 else
 echo "$gene\t$product"

separated by a tab character. The conditional block is terminated with a fi instruction ("if " in reverse):

 fi

In addition to else, the elif command can allow a series of mutually-exclusive conditional tests:

 if ["$feature" = "gene"]
 then
 ...
 elif ["$feature" = "mRNA"]
 then
 ...
 elif ["$feature" = "CDS"]
 then
 ...
 else
 ...
 fi

A variable can be set to the result of commands that are enclosed between "$(" and ")" symbols:

Entrez Direct: E-utilities on the Unix Command Line 113

 mrna=$(echo "$product" | grep 'transcript variant' |
 sed 's/^.*transcript \(variant .*\).*$/\1/')

Entrez Direct Commands Within Scripts
EDirect commands can also be run inside scripts. Saving the following text:

 #!/bin/bash

 printf "Years"
 for disease in "$@"
 do
 frst=$(echo -e "${disease:0:1}" | tr [a-z] [A-Z])
 printf "\t${frst}${disease:1:3}"
 done
 printf "\n"

 for ((yr = 2020; yr >= 1900; yr -= 10))
 do
 printf "${yr}s"
 for disease in "$@"
 do
 val=$(
 esearch -db pubmed -query "$disease [TITL]" |
 efilter -mindate "${yr}" -maxdate "$((yr+9))" |
 xtract -pattern ENTREZ_DIRECT -element Count
)
 printf "\t${val}"
 done
 printf "\n"
 done

to a file named "scan_for_diseases.sh" and executing:

 chmod +x scan_for_diseases.sh

allows the script to be called by name. Passing several disease names in command-line arguments:

 scan_for_diseases.sh diphtheria pertussis tetanus |

returns the counts of papers on each disease, by decade, for over a century:

 Years Diph Pert Teta
 2020s 104 281 154
 2010s 860 2558 1296
 2000s 892 1968 1345
 1990s 1150 2662 1617
 1980s 780 1747 1488
 ...

A graph of papers per decade for each disease is generated by piping the table to:

 xy-plot diseases.png

Passing the data instead to:

 align-columns -h 2 -g 4 -a ln

right-justifies numeric data columns for easier reading or for publication:

 Years Diph Pert Teta
 2020s 104 281 154

114 Entrez Programming Utilities Help

 2010s 860 2558 1296
 2000s 892 1968 1345
 1990s 1150 2662 1617
 1980s 780 1747 1488
 ...

while piping to:

 transmute -t2x -set Set -rec Rec -header

produces a custom XML structure for further comparative analysis by xtract.

Time Delay
The shell script command:

 sleep 1

adds a one second delay between steps, and can be used to help prevent overuse of servers by advanced scripts.

Xargs/Sh Loop
Writing a script to loop through data can sometimes be avoided by creative use of the Unix xargs and sh
commands. Within the "sh ‑c" command string, the last name and initials arguments (passed in pairs by "xargs
‑n 2") are substituted at the "$0" and "$1" variables. All of the commands in the sh string are run separately on
each name:

 echo "Garber ED Casadaban MJ Mortimer RK" |
 xargs -n 2 sh -c 'esearch -db pubmed -query "$0 $1 [AUTH]" |
 xtract -pattern ENTREZ_DIRECT -lbl "$1 $0" -element Count'

This produces PubMed article counts for each author:

 ED Garber 35
 MJ Casadaban 46
 RK Mortimer 85

While Loop
A "while" loop can also be used to independently process lines of data. Given a file "organisms.txt" containing
genus-species names, the Unix "cat" command:

 cat organisms.txt |

writes the contents of the file:

 Arabidopsis thaliana
 Caenorhabditis elegans
 Danio rerio
 Drosophila melanogaster
 Escherichia coli
 Homo sapiens
 Mus musculus
 Saccharomyces cerevisiae

This can be piped to a loop that reads one line at a time:

 while read org
 do
 esearch -db taxonomy -query "$org [LNGE] AND family [RANK]" < /dev/null |
 efetch -format docsum |

Entrez Direct: E-utilities on the Unix Command Line 115

 xtract -pattern DocumentSummary -lbl "$org" \
 -element ScientificName Division
 done

looking up the taxonomic family name and BLAST division for each organism:

 Arabidopsis thaliana Brassicaceae eudicots
 Caenorhabditis elegans Rhabditidae nematodes
 Danio rerio Cyprinidae bony fishes
 Drosophila melanogaster Drosophilidae flies
 Escherichia coli Enterobacteriaceae enterobacteria
 Homo sapiens Hominidae primates
 Mus musculus Muridae rodents
 Saccharomyces cerevisiae Saccharomycetaceae ascomycetes

(The "< /dev/null" input redirection construct prevents esearch from "draining" the remaining lines from stdin.)

For Loop
The same results can be obtained with organism names embedded in a "for" loop:

 for org in \
 "Arabidopsis thaliana" \
 "Caenorhabditis elegans" \
 "Danio rerio" \
 "Drosophila melanogaster" \
 "Escherichia coli" \
 "Homo sapiens" \
 "Mus musculus" \
 "Saccharomyces cerevisiae"
 do
 esearch -db taxonomy -query "$org [LNGE] AND family [RANK]" |
 efetch -format docsum |
 xtract -pattern DocumentSummary -lbl "$org" \
 -element ScientificName Division
 done

File Exploration
A for loop can also be used to explore the computer's file system:

 for i in *
 do
 if [-f "$i"]
 then
 echo $(basename "$i")
 fi
 done

visiting each file within the current directory. The asterisk ("*") character indicates all files, and can be replaced
by any pattern (e.g., "*.txt") to limit the file search. The if statement "‑f " operator can be changed to "‑d" to find
directories instead of files, and "‑s" selects files with size greater than zero.

Processing in Groups
EDirect supplies a join-into-groups-of script that combines lines of unique identifiers or sequence accession
numbers into comma-separated groups:

116 Entrez Programming Utilities Help

 #!/bin/sh
 xargs -n "$@" echo |
 sed 's/ /,/g

The following example demonstrates processing sequence records in groups of 200 accessions at a time:

 ...
 efetch -format acc |
 join-into-groups-of 200 |
 xargs -n 1 sh -c 'epost -db nuccore -format acc -id "$0" |
 elink -target pubmed |
 efetch -format abstract'

Programming in Go
A program written in a compiled language is translated into a computer's native machine instruction code, and
will run much faster than an interpreted script, at the cost of added complexity during development.

Google's Go language (also known as "golang") is "an open source programming language that makes it easy to
build simple, reliable, and efficient software". Go eliminates the need for maintaining complicated "make" files.
The build system assumes full responsibility for downloading external library packages. Automated dependency
management tracks module release numbers to prevent version skew.

As of 2020, the Go development process has been streamlined to the point that it is now easier to use than some
popular scripting languages.

To build Go programs, the latest Go compiler must be installed on your computer. A link to the installation URL
is in the Documentation section at the end of this web page.

basecount.go Program
Piping FASTA data to the basecount binary executable (compiled from the basecount.go source code file shown
below):

 efetch -db nuccore -id J01749,U54469 -format fasta | basecount

will return rows containing an accession number followed by counts for each base:

 J01749.1 A 983 C 1210 G 1134 T 1034
 U54469.1 A 849 C 699 G 585 T 748

The full (uncommented) source code for basecount.go is shown here, and is discussed below:

 package main

 import (
 "eutils"
 "fmt"
 "os"
 "sort"
)

 func main() {

 fsta := eutils.FASTAConverter(os.Stdin, false)

 countLetters := func(id, seq string) {

 counts := make(map[rune]int)

Entrez Direct: E-utilities on the Unix Command Line 117

 for _, base := range seq {
 counts[base]++
 }

 var keys []rune
 for ky := range counts {
 keys = append(keys, ky)
 }
 sort.Slice(keys, func(i, j int) bool { return keys[i] < keys[j] })

 fmt.Fprintf(os.Stdout, "%s", id)
 for _, base := range keys {
 num := counts[base]
 fmt.Fprintf(os.Stdout, "\t%c %d", base, num)
 }
 fmt.Fprintf(os.Stdout, "\n")
 }

 for fsa := range fsta {
 countLetters(fsa.SeqID, fsa.Sequence)
 }
 }

Performance can be measured with the Unix "time" command:

 time basecount < NC_000014.fsa

The program reads and counts the 107,043,718 bases of human chromosome 14, from an existing FASTA file, in
under 2.5 seconds:

 NC_000014.9 A 26673415 C 18423758 G 18559033 N 16475569 T 26911943
 2.287

basecount.go Code Review
Go programs start with package main and then import additional software libraries (many included with Go,
others residing in commercial repositories like github.com):

 package main

 import (
 "eutils"
 "fmt"
 "os"
 "sort"
)

Each compiled Go binary has a single main function, which is where program execution begins:

 func main() {

The fsta variable is assigned to a data channel that streams individual FASTA records one at a time:

 fsta := eutils.FASTAConverter(os.Stdin, false)

The countLetters subroutine will be called with the identifier and sequence of each FASTA record:

 countLetters := func(id, seq string) {

An empty counts map is created for each sequence, and its memory is freed when the subroutine exits:

118 Entrez Programming Utilities Help

 counts := make(map[rune]int)

A for loop on the range of the sequence string visits each sequence letter. The map keeps a running count for
each base or residue, with "++" incrementing the current value of the letter's map entry:

 for _, base := range seq {
 counts[base]++
 }

(String iteration by range returns position and letter pairs. Since the code does not use the position, its value is
absorbed by an underscore ("_") character.)

Maps are not returned in a defined order, so map keys are loaded to a keys array, which is then sorted:

 var keys []rune
 for ky := range counts {
 keys = append(keys, ky)
 }
 sort.Slice(keys, func(i, j int) bool { return keys[i] < keys[j] })

(The second argument passed to sort.Slice is an anonymous function literal used to control the sort order. It is
also a closure, implicitly inheriting the keys array from the enclosing function.)

The sequence identifier is printed in the first column:

 fmt.Fprintf(os.Stdout, "%s", id)

Iterating over the array prints letters and base counts in alphabetical order, with tabs between columns:

 for _, base := range keys {
 num := counts[base]
 fmt.Fprintf(os.Stdout, "\t%c %d", base, num)
 }

A newline is printed at the end of the row, and then the subroutine exits, clearing the map and array:

 fmt.Fprintf(os.Stdout, "\n")
 }

The remainder of the main function uses a loop to drain the fsta channel, passing the identifier and sequence
string of each successive FASTA record to the countLetters function. The main function then ends with a final
closing brace:

 for fsa := range fsta {
 countLetters(fsa.SeqID, fsa.Sequence)
 }
 }

Note that the sequence of human chromosome 14, processed above, is stored in its entirety as a single
contiguous Go string. No special coding considerations are needed for input, access, or memory management,
even though it is over 107 million characters long.

Go Dependency Management
EDirect includes source code for the eutils helper library, which consolidates common functions used by xtract,
transmute, and rchive, including the FASTA parser/streamer used by the basecount program shown above.

In addition to around two dozen eutils "*.go" files, the distribution contains "go.mod" and "go.sum" module files
for the eutils package. They were created by running "./build.sh" in the eutils directory prior to release on the
FTP site.

Entrez Direct: E-utilities on the Unix Command Line 119

Modules provide a mechanism for automatically managing external dependencies. They record version numbers
and checksums for the packages imported by eutils source files during development. Go will then retrieve the
same versions of those packages, along with all of their internal support packages, if the eutils library is later
incorporated into other software development projects.

Use of modules allows external Go packages to evolve independently, publishing newer versions with
incompatible function argument signatures on their own schedules, while ensuring that this natural software
development cycle does not break a working library or application build at some inopportune time in the future.

Compiling a Go Project
Each project typically resides in its own directory. The source code can be split into multiple files, and the build
process will normally compile all of the "*.go" files together.

Create a new directory named "basecount" with:

 cd ~
 mkdir basecount

and copy the basecount.go source code file into that directory.

The program can then be compiled by running:

 cd basecount
 go mod init basecount
 echo "replace eutils => $HOME/edirect/eutils" >> go.mod
 go get eutils
 go mod tidy
 go build

but for convenience these commands are usually incorporated into a build script. To do this, save the following
script to a file named build.sh in the same directory:

 #!/bin/bash

 if [! -f "go.mod"]
 then
 go mod init "$(basename $PWD)"
 echo "replace eutils => $HOME/edirect/eutils" >> go.mod
 go get eutils
 fi

 if [! -f "go.sum"]
 then
 go mod tidy
 fi

 go build

To compile the executable, enter the basecount directory, set the Unix execution permission bit, and run the
build script:

 cd basecount
 chmod +x build.sh
 ./build.sh

The build script runs "go mod init" to generate "go.mod", and "go mod tidy" to generate " go.sum", if either
module file is not already present.

120 Entrez Programming Utilities Help

(The "$(basename $PWD)" construct sets the executable's default name to match the parent directory, without
needing to manually customize the "go mod init" line for each project.)

(The "replace eutils => $HOME/edirect/eutils" construct computes the path for finding the local eutils source
code directory in the standard EDirect installation location.)

The "go build" instruction compiles the source file(s) for the application and all dependent libraries (caching the
compiled object files for faster use later). It will then link these into a binary executable file that can run on the
development machine.

You can select specific input files, change the executable program's name, and cross-compile for a different
platform, with additional arguments to "go build":

 env GOOS=darwin GOARCH=arm64 go build -o basecount.Silicon basecount.go

Separate projects in a single directory could be built by changing the "go build" line to:

 for fl in *.go
 do
 go build -o "${fl%.go}" "$fl"
 done

Python Integration
Controlling EDirect from Python scripts is easily done with assistance from the edirect.py library file, which is
included in the EDirect archive:

 import subprocess
 import shlex

 def execute(cmmd, data=""):
 if isinstance(cmmd, str):
 cmmd = shlex.split(cmmd)
 res = subprocess.run(cmmd, input=data,
 capture_output=True,
 encoding='UTF-8')
 return res.stdout.strip()

 def pipeline(cmmds, data=""):
 def flatten(cmmd):
 if isinstance(cmmd, str):
 return cmmd
 else:
 return shlex.join(cmmd)
 if not isinstance(cmmds, str):
 cmmds = ' | '.join(map(flatten, cmmds))
 res = subprocess.run(cmmds, input=data, shell=True,
 capture_output=True,
 encoding='UTF-8')
 return res.stdout.strip()

 def efetch(*, db, id, format, mode=""):
 cmmd = ('efetch', '-db', db, '-id', str(id), '-format', format)
 if mode:
 cmmd = cmmd + ('-mode', mode)
 return execute(cmmd))

At the beginning of your program, import the edirect module with the following commands:

Entrez Direct: E-utilities on the Unix Command Line 121

 #!/usr/bin/env python3

 import sys
 import os
 import shutil

 sys.path.insert(1, os.path.dirname(shutil.which('xtract')))
 import edirect

(Note that the import command uses "edirect", without the ".py" extension.)

The first argument to edirect.execute is the Unix command you wish to run. It can be provided either as a string:

 edirect.execute("efetch -db nuccore -id NM_000518.5 -format fasta")

or as a sequence of strings, which allows a variable's value to be substituted for a specific parameter:

 accession = "NM_000518.5"
 edirect.execute(('efetch', '-db', 'nuccore', '-id', accession, '-format', 'fasta'))

An optional second argument accepts data to be passed to the Unix command through stdin. Multiple steps are
chained together by using the result of the previous command as the data argument in the next command:

 seq = edirect.execute("efetch -db nuccore -id NM_000518.5 -format fasta")
 sub = edirect.execute("transmute -extract -1-based -loc 51..494", seq)
 prt = edirect.execute(('transmute', '-cds2prot', '-every', '-trim'), sub)

Data piped to the script itself is relayed by using "sys.stdin.read()" as the second argument.

Alternatively, the edirect.pipeline function can accept a sequence of individual command strings to be piped
together for execution:

 edirect.pipeline(('efetch -db protein -id NP_000509.1 -format gp',
 'xtract -insd Protein mol_wt sub_sequence'))

or execute a string containing several piped commands:

 edirect.pipeline('''efetch -db nuccore -id J01749 -format fasta |
 transmute -replace -offset 1907 -delete GG -insert TC |
 transmute -search -circular GGATCC:BamHI GAATTC:EcoRI CTGCAG:PstI |
 align-columns -g 4 -a rl''')

Hiding details (e.g., isinstance, shlex.join, shlex.split, and subprocess.run) inside a common module means that
biologists who are new to coding could control an entire analysis pipeline from their first Python program.

An edirect.efetch shortcut that uses named arguments is also available:

 edirect.efetch(db="nuccore", id="NM_000518.5", format="fasta")

To run a custom shell script, make sure the execute permission bit is set, supply the full execution path, and
follow it with any command-line arguments:

 db = "pubmed"
 res = edirect.execute(("./datefields.sh", db), "")

NCBI C++ Toolkit Access
EDirect scripts can be called from the NCBI C++ toolkit using the ncbi::edirect::Execute function:

 #include <misc/eutils_client/eutils_client.hpp>

122 Entrez Programming Utilities Help

The function signature has separate parameters for the script name and its command-line arguments, followed
by an optional string to be passed via stdin:

 string Execute (
 const string& cmmd,
 const vector<string>& args,
 const string& data = kEmptyStr
);

Multiple steps are chained together by using the previous result as the data argument in the next command:

 string seq = ncbi::edirect::Execute
 ("efetch", { "-db", "nuccore", "-id", "NM_000518.5", "-format", "fasta" });
 string sub = ncbi::edirect::Execute
 ("transmute", { "-extract", "-1-based", "-loc", "51..494" }, seq);
 string prt = ncbi::edirect::Execute
 ("transmute", { "-cds2prot", "-every", "-trim" }, sub);

The argument vector can also be generated dynamically, under program control:

 vector<string> args;

 args.push_back("-db");
 args.push_back("pubmed");
 args.push_back("-format");
 args.push_back("abstract");
 args.push_back("-id");
 args.push_back(uid);

Citation matching can be performed on a CPub object reference with the -asn argument:

 string uid = ncbi::edirect::Execute
 ("cit2pmid", { "-asn", FORMAT(MSerial_FlatAsnText << pub) });

or you can use -title, -author, -journal, -volume, -issue, -pages, and -year arguments.

If a matching PMID is found, it can be retrieved as PubmedArticle XML and transformed into Pubmed-entry
ASN.1:

 string xml = ncbi::edirect::Execute
 ("efetch", { "-db", "pubmed", "-format", "xml" }, uid);
 string asn = ncbi::edirect::Execute
 ("pma2pme", { "-std" }, xml);

The ASN.1 string can then be read into memory with an object loader for further processing:

 #include <objects/pubmed/Pubmed_entry.hpp>

 unique_ptr<CObjectIStream> stm;
 stm.reset (CObjectIStream::CreateFromBuffer
 (eSerial_AsnText, asn.data(), asn.length()));

 CRef<CPubmed_entry> pme (new CPubmed_entry);
 stm->Read (ObjectInfo (*pme));

Additional Examples
EDirect examples demonstrate how to answer ad hoc questions in several Entrez databases. The detailed
examples have been moved to a separate document, which can be viewed by clicking on the ADDITIONAL
EXAMPLES link.

Entrez Direct: E-utilities on the Unix Command Line 123

Appendices

Command-Line Arguments
Each EDirect program has a ‑help command that prints detailed information about available arguments. These
include ‑sort values for esearch, ‑format and ‑mode choices for efetch, and ‑cmd options for elink.

Einfo Data
Einfo field data contains status flags for several term list index properties:

 <Field>
 <Name>ALL</Name>
 <FullName>All Fields</FullName>
 <Description>All terms from all searchable fields</Description>
 <TermCount>280005319</TermCount>
 <IsDate>N</IsDate>
 <IsNumerical>N</IsNumerical>
 <SingleToken>N</SingleToken>
 <Hierarchy>N</Hierarchy>
 <IsHidden>N</IsHidden>
 <IsTruncatable>Y</IsTruncatable>
 <IsRangable>N</IsRangable>
 </Field>

Unix Utilities
Several useful classes of Unix text processing filters, with selected arguments, are presented below:

Process by Contents:

 sort Sorts lines of text

 -f Ignore case
 -n Numeric comparison
 -r Reverse result order

 -k Field key (start,stop or first)
 -u Unique lines with identical keys

 -b Ignore leading blanks
 -s Stable sort
 -t Specify field separator

 uniq Removes repeated lines

 -c Count occurrences
 -i Ignore case

 -f Ignore first n fields
 -s Ignore first n characters

 -d Only output repeated lines
 -u Only output non-repeated lines

 grep Matches patterns using regular expressions

 -i Ignore case

124 Entrez Programming Utilities Help

 -v Invert search
 -w Search expression as a word
 -x Search expression as whole line

 -e Specify individual pattern

 -c Only count number of matches
 -n Print line numbers
 -A Number of lines after match
 -B Number of lines before match

Regular Expressions:

 Characters

 . Any single character (except newline)
 \w Alphabetic [A-Za-z], numeric [0-9], or underscore (_)
 \s Whitespace (space or tab)
 \ Escapes special characters
 [] Matches any enclosed characters

 Positions

 ^ Beginning of line
 $ End of line
 \b Word boundary

 Repeat Matches

 ? 0 or 1
 * 0 or more
 + 1 or more
 {n} Exactly n

 Escape Sequences

 \n Line break
 \t Tab character

Modify Contents:

 sed Replaces text strings

 -e Specify individual expression
 s/// Substitute
 /g Global
 /I Case-insensitive
 /p Print

 tr Translates characters

 -d Delete character
 -s Squeeze runs of characters

 rev Reverses characters on line

Format Contents:

 column Aligns columns by content width

Entrez Direct: E-utilities on the Unix Command Line 125

 -s Specify field separator
 -t Create table

 expand Aligns columns to specified positions

 -t Tab positions

 fold Wraps lines at a specific width

 -w Line width
 -s Fold at spaces

Filter by Position:

 cut Removes parts of lines

 -c Characters to keep
 -f Fields to keep
 -d Specify field separator

 -s Suppress lines with no delimiters

 head Prints first lines

 -n Number of lines

 tail Prints last lines

 -n Number of lines

Miscellaneous:

 wc Counts words, lines, or characters

 -c Characters
 -l Lines
 -w Words

 xargs Constructs arguments

 -n Number of words per batch

 mktemp Make temporary file

 join Join columns in files by common field

 paste Merge columns in files by line number

File Compression:

 tar Archive files

 -c Create archive
 -f Name of output file
 -z Compress archive with gzip

 gzip Compress file

 -k Keep original file
 -9 Best compression

126 Entrez Programming Utilities Help

 unzip Decompress .zip archive

 -p Pipe to stdout

 gzcat Decompress .gz archive and pipe to stdout

Directory and File Navigation:

 cd Changes directory

 / Root
 ~ Home
 . Current
 .. Parent
 - Previous

 ls Lists file names

 -1 One entry per line
 -a Show files beginning with dot (.)
 -l List in long format
 -R Recursively explore subdirectories
 -S Sort files by size
 -t Sort by most recently modified
 .* Current and parent directory

 pwd Prints working directory path

File Redirection:

 < Read stdin from file
 > Redirect stdout to file
 >> Append to file
 2> Redirect stderr
 2>&1 Merge stderr into stdout
 | Pipe between programs
 <(cmd) Execute command, read results as file

Shell Script Variables:

 $0 Name of script
 $n Nth argument
 $# Number of arguments
 "$*" Argument list as one argument
 "$@" Argument list as separate arguments
 $? Exit status of previous command

Shell Script Tests:

 -d Directory exists
 -f File exists
 -s File is not empty
 -n Length of string is non-zero
 -x File is executable
 -z Variable is empty or not set

Shell Script Options:

 set Set optional behaviors

Entrez Direct: E-utilities on the Unix Command Line 127

 -e Exit immediately upon error
 -u Treat unset variables as error
 -x Trace commands and argument

File and Directory Extraction:

 BAS=$(printf pubmed%03d $n)
 DIR=$(dirname "$0")
 FIL=$(basename "$0")

Remove Prefix:

 FILE="example.tar.gz"
 # ${FILE#.*} -> tar.gz
 ## ${FILE##.*} -> gz

Remove Suffix:

 FILE="example.tar.gz"
 TYPE="http://identifiers.org/uniprot_enzymes/"
 % ${FILE%.*} -> example.tar
 ${TYPE%/} -> http://identifiers.org/uniprot_enzymes
 %% ${FILE%%.*} -> example

Loop Constructs:

 while IFS=$'\t' read ...
 for sym in HBB BRCA2 CFTR RAG1
 for col in "$@"
 for yr in {1960..2020}
 for i in $(seq $first $incr $last)
 for fl in *.xml.gz

Additional documentation with detailed explanations and examples can be obtained by typing "man" followed
by a command name.

Release Notes
EDirect release notes describe the history of incremental development and refactoring, from the original
implementation in Perl to the redesign in Go and shell script. The detailed notes have been moved to a separate
document, which can be viewed by clicking on the RELEASE NOTES link.

For More Information

Announcement Mailing List
NCBI posts general announcements regarding the E-utilities to the utilities-announce announcement mailing
list. This mailing list is an announcement list only; individual subscribers may not send mail to the list. Also, the
list of subscribers is private and is not shared or used in any other way except for providing announcements to
list members. The list receives about one posting per month. Please subscribe at the above link.

References
The Smithsonian Online Collections Databases are provided by the National Museum of Natural History,
Smithsonian Institution, 10th and Constitution Ave. N.W., Washington, DC 20560-0193. https://
collections.nmnh.si.edu/.

128 Entrez Programming Utilities Help

https://www.ncbi.nlm.nih.gov/mailman/listinfo/utilities-announce/
https://www.ncbi.nlm.nih.gov/mailman/listinfo/utilities-announce/

den Dunnen JT, Dalgleish R, Maglott DR, Hart RK, Greenblatt MS, McGowan-Jordan J, Roux AF, Smith T,
Antonarakis SE, Taschner PE. HGVS Recommendations for the Description of Sequence Variants: 2016 Update.
Hum Mutat. 2016. https://doi.org/10.1002/humu.22981. (PMID 26931183.)

Holmes JB, Moyer E, Phan L, Maglott D, Kattman B. SPDI: data model for variants and applications at NCBI.
Bioinformatics. 2020. https://doi.org/10.1093/bioinformatics/btz856. (PMID 31738401.)

Hutchins BI, Baker KL, Davis MT, Diwersy MA, Haque E, Harriman RM, Hoppe TA, Leicht SA, Meyer P,
Santangelo GM. The NIH Open Citation Collection: A public access, broad coverage resource. PLoS Biol. 2019.
https://doi.org/10.1371/journal.pbio.3000385. (PMID 31600197.)

Kim S, Thiessen PA, Cheng T, Yu B, Bolton EE. An update on PUG-REST: RESTful interface for programmatic
access to PubChem. Nucleic Acids Res. 2018. https://doi.org/10.1093/nar/gky294. (PMID 29718389.)

Mitchell JA, Aronson AR, Mork JG, Folk LC, Humphrey SM, Ward JM. Gene indexing: characterization and
analysis of NLM's GeneRIFs. AMIA Annu Symp Proc. 2003:460-4. (PMID 14728215.)

Ostell JM, Wheelan SJ, Kans JA. The NCBI data model. Methods Biochem Anal. 2001. https://doi.org/
10.1002/0471223921.ch2. (PMID 11449725.)

Schuler GD, Epstein JA, Ohkawa H, Kans JA. Entrez: molecular biology database and retrieval system. Methods
Enzymol. 1996. https://doi.org/10.1016/s0076-6879(96)66012-1. (PMID 8743683.)

Wei C-H, Allot A, Leaman R, Lu Z. PubTator central: automated concept annotation for biomedical full text
articles. Nucleic Acids Res. 2019. https://doi.org/10.1093/nar/gkz389. (PMID 31114887.)

Wu C, Macleod I, Su AI. BioGPS and MyGene.info: organizing online, gene-centric information. Nucleic Acids
Res. 2013. https://doi.org/10.1093/nar/gks1114. (PMID 23175613.)

Documentation
EDirect navigation functions call the URL-based Entrez Programming Utilities:

 https://www.ncbi.nlm.nih.gov/books/NBK25501

NCBI database resources are described by:

 https://www.ncbi.nlm.nih.gov/pubmed/37994677

Information on how to obtain an API Key is described in this NCBI blogpost:

 https://ncbiinsights.ncbi.nlm.nih.gov/2017/11/02/new-api-keys-for-the-e-utilities

An introduction to shell scripting for non-programmers is at:

 https://missing.csail.mit.edu/2020/shell-tools/

An article on the Go programming language, written by its creators, is at:

 https://cacm.acm.org/research/the-go-programming-language-and-environment/

and transcripts of talks on design philosophy and retrospective experience of Go are at:

 https://commandcenter.blogspot.com/2012/06/less-is-exponentially-more.html

 https://commandcenter.blogspot.com/2024/01/what-we-got-right-what-we-got-wrong.html

Instructions for downloading and installing the Go compiler are at:

 https://golang.org/doc/install#download

Entrez Direct: E-utilities on the Unix Command Line 129

https://www.ncbi.nlm.nih.gov/books/NBK25501
https://pubmed.ncbi.nlm.nih.gov/37994677
https://ncbiinsights.ncbi.nlm.nih.gov/2017/11/02/new-api-keys-for-the-e-utilities
https://missing.csail.mit.edu/2020/shell-tools/
https://cacm.acm.org/research/the-go-programming-language-and-environment/
https://commandcenter.blogspot.com/2012/06/less-is-exponentially-more.html
https://commandcenter.blogspot.com/2024/01/what-we-got-right-what-we-got-wrong.html
https://golang.org/doc/install#download

Additional NCBI website and data usage policy and disclaimer information is located at:

 https://www.ncbi.nlm.nih.gov/home/about/policies/

Public Domain Notice
A copy of the NCBI Public Domain Notice, which applies to EDirect, is shown below:

 PUBLIC DOMAIN NOTICE
 National Center for Biotechnology Information

 This software/database is a "United States Government Work" under the
 terms of the United States Copyright Act. It was written as part of
 the author's official duties as a United States Government employee and
 thus cannot be copyrighted. This software/database is freely available
 to the public for use. The National Library of Medicine and the U.S.
 Government have not placed any restriction on its use or reproduction.

 Although all reasonable efforts have been taken to ensure the accuracy
 and reliability of the software and data, the NLM and the U.S.
 Government do not and cannot warrant the performance or results that
 may be obtained by using this software or data. The NLM and the U.S.
 Government disclaim all warranties, express or implied, including
 warranties of performance, merchantability or fitness for any particular
 purpose.

 Please cite the author in any work or product based on this material.

Getting Help
Please refer to the PubMed and Entrez help documents for more information about search queries, database
indexing, field limitations and database content.

Suggestions, comments, and questions specifically relating to the EUtility programs may be sent to
eutilities@ncbi.nlm.nih.gov.

130 Entrez Programming Utilities Help

https://www.ncbi.nlm.nih.gov/home/about/policies/
https://www.ncbi.nlm.nih.gov/books/n/helppubmed/pubmedhelp/
https://www.ncbi.nlm.nih.gov/books/n/helpentrez/EntrezHelp/

Entrez Direct Release Notes
Jonathan Kans, PhD 1

Created: April 23, 2013; Updated: May 13, 2024.

EDirect was conceived in 2012, prototyped in Perl, and released to the public in 2014.

Xtract was subsequently rewritten in the compiled Go programming language, for a hundredfold speed
improvement on modern multi-processor computers. Transmute and rchive are also provided as platform-
specific Go executables.

A major refactoring, for ease of maintenance and long-term stability, was completed in 2020. EDirect now exists
as a set of Unix shell scripts plus the trio of utilities implemented in Go. The original Perl code has been retired.

2024

Version 22.1: May 13, 2024
• Xtract and transmute high-level functions remove leading Byte Order Marks.

• Transmute -bom removes Byte Order Mark at the beginning of strings.

• Phrase-search -match returns all UIDs that are matched more than once.

• Replaced just-first-key script with just-top-hits plus numeric argument.

Version 22.0: April 30, 2024
• Recompiled executables with Go 1.22.

• Restored ability to use -len with "*" to get length of XML record.

• Added SIZE index to archive-pubmed and archive-pmc.

Version 21.9: April 16, 2024
• Added support for 64-bit Linux-aarch64 variant of 32-bit Linux-*arm*.

• Consolidated extraction customization arguments into a structure.

Version 21.8: April 4, 2024
• Xtract -split takes substring delimiter from -with argument.

• Xtract -cds2prot adds explicit -frame0 and -frame1 to default (1-based) -frame.

• Transmute -cds2prot uses -gcode for consistency with xtract -cds2prot.

• Transmute -replace also adds explicit -offset0 and -offset1 to default (0-based) -offset.

• Transmute -r2p verify does full lookup if original PMID is in "erratum for", etc., exclusion list.

• Improved phrase-search logic for recognizing parentheses inside chemical names.

Author Affiliation: 1 NCBI; Email: kans@ncbi.nlm.nih.gov.

 Corresponding author.

131

• Archive-pubmed and archive-pmc add -info flag to check for out-of-date release files.

Version 21.7: March 21, 2024
• Xtract -molwt variants -molwt-m and -molwt-f retain the initial methionine or fMet.

• Xtract -pkg exploration idiosyncracy is now bypassed internally.

• Added bsmp2info for easier extraction of BioSample data.

• Experimental gbf2info script is alternative to xtract -insdx flatfile field extraction.

• New systematic-mutations script can follow disambiguate-nucleotides.

• Archive-pubmed warns if release files for previous years are present.

• Added indexed DOI field to local PubMed archive, with mirror-image terms.

• Phrase-search reverses order of characters in query term for DOI field.

• Phrase-search recognizes and skips parentheses inside chemical names.

• Jaccard test for best citation match candidate no longer removes stop words.

• Citation matcher excludes records marked "erratum for", "retraction in", etc.

Version 21.6: March 5, 2024
• Navigation command -help functions report if new version of EDirect is available.

Version 21.5: February 20, 2024
• Added multi-step transformations and sequence analysis sections to readme.pdf.

• Xtract checks for commands starting with a Unicode dash instead of an ASCII hyphen.

• Xtract -insdx convenience function wraps -insd table in XML.

• Transmute -fasta reformats sequences into fixed-width lines.

Version 21.4: February 12, 2024
• Xtract variables can now record the result of an -element variant on an object.

• Xtract -numeric only accepts items that are entirely digits.

• Xtract -avg joined by -geo, -hrm, and -rms integer mean functions.

• Documented xtract -lge, lg2, and -log integer logarithm functions.

• Xtract -med for even-sized lists now uses the average of the middle elements.

• Preferred environment variable name is EDIRECT_LOCAL_ARCHIVE.

• New BioSample section added to the Additional Examples web page.

Version 21.3: January 29, 2024
• Nquire accepts leading -http-version, -content-type, and -user-agent arguments.

132 Entrez Programming Utilities Help

• Nquire -datasets implements GET queries using RESTful arguments.

• Added jsonl2xml script to convert JSON Lines output from NCBI Datasets.

• Added refseq-nm-cds to consolidate and replace earlier scripts.

• Use align-columns -a "w" to report widths of each column.

• Increased tbl2xml buffer size to handle titin protein and cDNA sequences.

• Removed retired homologene database from test files.

Version 21.2: January 17, 2024
• Phrase-search -terms and -totals now implemented in compiled code.

• Local archive positional indices no longer treat integers as stop words.

• Navigation commands now map -db nucleotide, which has no links, to nuccore.

• Nquire -citmatch shortcut extracts matching PMID from JSON result.

2023

Version 21.1: December 27, 2023
• New -zap argument in archive-pubmed and archive-pmc removes ALL files.

• Added refseq-nm-subseq to extract coding region sequences from FTP release files.

• Added refseq-nm-starts to get CDS offsets needed by hgvs2spdi in advance.

Version 21.0: December 20, 2023
• Archive-pubmed time delay increases before each failed download retry attempt.

Version 20.9: December 6, 2023
• Archive-pubmed no longer needs year of MeSH and journal data files.

• Transmute -cds2prot -all adds -orf flag, with capital letters marking start codon products.

• Transmute -gbf extended with -accession(s), -taxid(s), and -organism filter arguments.

• Transmute -gbf includes -require and -exclude arguments to filter based on string value.

• Transmute -txf uses -pattern to identify start of text record for filtering.

• Added filter-genbank and filter-record shortcut scripts for transmute -gbf and -tfx.

• Esearch recognizes -geo_loc_name, which will replace the -country shortcut.

• Phrase-search -match queries individual terms and sorts by number of hits.

• Added just-first-key script to return lines where first column matches value in first row.

• Added indexed KYWD field to local PubMed archive.

• Added -even and -odd element variants to xtract.

Entrez Direct Release Notes 133

• Renamed Clean functions to Normalize, to avoid confusion with Cleanup methods.

• Removed code for indexing retired Global Network of Biomedical Relationships project.

Version 20.8: November 13, 2023
• Continued refactoring to allow extension of local archive without modifying base source code.

• Code for downloading original records from network now contained in each archive script.

• Xtract instructions for indexing local records also reside within archive scripts.

• NCBI NLP terms and NIH OCC links are indexed by Go language source code "scripts".

• Archive scripts use "go run" to dynamically compile and execute the stand-alone Go programs.

• Large Unicode-to-ASCII mapping files moved to data subfolder.

Version 20.7: November 6, 2023
• Refactored local archive creation scripts for ease of future expansion.

• Split archive-ncbinlp and archive-nihocc out of archive-pubmed script.

• Added idx-grant helper script for custom-index.

Version 20.6: October 20, 2023
• EDirect suppresses "root" email name to compensate for server issue.

• Nquire clears bold red text highlights after reporting file download failure.

• Xtract -insd recognizes geo_loc_name source qualifier, which will replace country.

• New mask argument in eutils.VisitElements blocks recursive exploration.

• Inverted index subdirectory groups now controlled by argument.

• Added StringToXML function to consolidate common logic for several format converters.

• Refactored fetch-local and stream-local to simplify record retrieval code.

Version 20.5: September 27, 2023
• Transmute -f2x wraps FASTA stream in simple XML.

• Transmute -cds2prot adds -max for FASTA line length, and -all for six-frame translation.

• Xtract -gcode and -frame values used by -cds2prot protein translation.

• Xtract -pept splits amino acid runs at *, -, x, or X.

• Changed baseToIdx from map to array to speed up translation time.

Version 20.4: September 15, 2023
• Improved xtract internal conversion speed of JSON, ASN.1, and GenBank formats.

• Efetch -db pubmed regains ability to use -format asn.1.

134 Entrez Programming Utilities Help

• Phrase-search -debug prints environment variables, tests PubMed record fetch.

• Added toml2xml script to parse TOML configuration file contents into XML.

• All genetic code translation tables are precomputed in gdata.go source file.

Version 20.3: September 6, 2023
• Navigation functions print warning for unrecognized argument as well as unrecognized option.

• Xtract -indexer uses -wrp value as field name for positional indices.

• Xtract -indexer supersedes earlier field-specific positional indexing functions.

• Xtract -pentamers generates 5-letter overlapping sequence segments.

• Local archive 16-bit position values are now unsigned to contain longest protein sequence.

Version 20.2: August 22, 2023
• Recompiled executables with Go 1.21.

• Reverted archive-pubmed and archive-taxonomy to use FTP by default.

• Added archive-pubmed -stem flag to optionally populate the STEM indexed field.

• Xtract -journal improves journal title capitalization for APA converter.

• Xtract "[^]" element construct handles truncation guide strings with vertical bars.

• Added yaml2xml script to parse YAML configuration file contents into XML.

• Added YR (year) and DT (date) variables to print-columns and filter-columns scripts.

Version 20.1: July 31, 2023
• Refactored ERROR and WARNING messages to consolidate highlighting code.

Version 20.0: July 17, 2023
• EDirect navigation shell scripts now use bash interpreter instead of sh, since SOLR workaround needs bash
"local" variables in recursive function.

• Archive-pmc adds -https and -ftp download flags, default reverted to FTP (Aspera Connect, if present).

• Common PMC archive wrappers for TEXT include TITLE, ABSTRACT, INTRODUCTION, MATERIALS,
METHODS, RESULTS, DISCUSSION, and CONCLUSION, with PARAGRAPH for unrecognized.

• Select abstract paragraphs with xtract -pattern PMCInfo -sep "\n" -element ABSTRACT/TEXT.

Version 19.9: June 30, 2023
• Esearch -db pubmed with both -query and -mindate/-maxdate works with SOLR server.

• Efetch -db gene -format xml retrieves in chunks of 200 to avoid server errors.

• Nquire on Cygwin uses wget by default, otherwise prefers curl.

Entrez Direct Release Notes 135

Version 19.8: June 12, 2023
• Local archive scripts for pubmed, pmc, and taxonomy use HTTPS by default.

• Archive first tries EDIRECT_LOCAL_CONFIG environment variable to find INI file.

• Phrase-search author queries automatically apply appropriate wildcard truncation.

• Disable middle initial expansion with a dash, e.g., "Jefferson T- [AUTH]".

Version 19.7: May 31, 2023
• New environment variables (EDIRECT_LOCAL_MASTER and EDIRECT_LOCAL_WORKING) point to
common volumes with pubmed, pmc, and taxonomy subfolders, superseding database-specific variables.

• Archive-pubmed PDAT field replaced by DATE, has better consistency with older records.

• Added ini2xml script to parse INI configuration file contents into XML.

Version 19.6: May 25, 2023
• Switched archive-pmc script to use PMC bulk retrieval service with daily updates.

• PMC title, abstract, and regular text paragraphs are indexed in PMCInfo object.

Version 19.5: May 8, 2023
• Database is case-insensitive to prevent -db PMC, SNP, or SRA from bypassing normalization.

Version 19.4: April 24, 2023
• Added archive-taxonomy to build local index of NCBI taxonomy data.

• Integrates data from new_taxdump.tar.gz release and introduces new TaxonInfo record.

• Initial taxoninfo.xml product can also be analyzed by xtract.

• Still need to import files containing type material and biological host information.

• Use phrase-search -db taxonomy for queries, fetch-taxonomy to retrieve records.

• Added fetch-local, which takes a -db argument, to start reversing script proliferation.

Version 19.3: April 17, 2023
• XML parsing tolerates <? processing instructions ?> with embedded HTML error messages.

• Xtract -tag, -att, -atr, -cls, -slf, and -end commands added for stepwise attribute construction.

• Xtract -tag sets internal -wrp flag to reencode angle brackets and ampersands in new XML.

• Xtract exploration on "*" searches inside current object without needing to be given its name.

• Raised default maximum nesting depth of xtract -verify to allow complex MathML markup in PMC.

• Added xtract -verify -max argument to control reporting depth threshold.

• Xtract -test reports visible Combining Accent strings and invisible Unicode characters.

• Idx-errors helper for custom-index adds ERRS field for records with problematic characters.

136 Entrez Programming Utilities Help

• Added pma2apa script to convert PubmedArticle XML to APA format.

• Updated download-ncbi-software -datasets URL address to v2.

• For Apple Silicon, install-edirect.sh script also retrieves Darwin (x86) executables.

• Installation script will place new edirect folder at head of PATH, to bypass any older version.

• Installation command and installation script use HTTPS instead of FTP.

Version 19.2: March 23, 2023
• Xtract -insd accepts GO_component, GO_function, and GO_process qualifiers.

Version 19.1: March 16, 2023
• Esearch -db pubmed saves <Query> item in ENTREZ_DIRECT message even for small result counts.

• The -quick argument reverses this, forcing use of history mechanism regardless of SOLR truncation.

• Elink performs additional -target and -related argument reality checks.

• Xtract detects multiple -if or -unless conditional arguments in same exploration block.

Version 19.0: February 16, 2023
• SOLR workaround uses "all [SB] NOT pubmed books [SB]" to avoid sorting artifact.

• Esearch -query removes apostrophes in text before processing.

• Xtract -unit PubDate -date "*" works with document summaries.

Version 18.9: February 12, 2023
• Maximum PMID determination for SOLR workaround compensates for "all [SB]" sorting artifact.

• Archive-pubmed -https -index downloads extra data files without use of ftp protocol.

• Archive-pubmed adds initial support for zero-padded UID index.

Version 18.8: January 27, 2023
• SOLR workaround uses binary search on PMID range instead of sliding CRDT window.

• Local PubMed archive adds "conflict of interest statement" to PROP field.

• Moved PublicationType out of PROP and into new PTYP field.

• Added RDAT field for DateRevised in local archive.

• New archive-pubmed -ftp and -https flags select release file download method.

• Added JOUR and SRC fields to archive-pmc for journal capture.

• Esearch -tranquil suppresses "No items found" error, skips automatic retries.

• Xtract -sort expanded to -sort-fwd and -sort-rev variants.

• Xtract -initials parses initials from first and middle names.

Entrez Direct Release Notes 137

Version 18.7: January 4, 2023
• Xtract -unit PubDate -date "*" construct returns date in YYYY/MM/DD format.

• Local PubMed archive adds PDAT index for wildcard searching on publication date.

• Added archive-pmc and fetch-pmc scripts for initial support of local PMC archive.

• Phrase-search -db pmc selects use of local PMC search index.

• PMC indexes positional TITL, ABST, and TEXT fields, plus AUTH and YEAR.

2022

Version 18.6: December 20, 2022
• Refactored local archive incremental indexing, reusing existing XML multi-threaded processing components
for simpler code and faster performance.

Version 18.5: December 12, 2022
• EUtils queries check XML results for messages packaged in WarningList.

• Epost prints XML result on failure to combine loaded components.

• Esearch no longer re-encodes double quote to " with SOLR server.

• Archive-pubmed relocates Sentinels directory inside Archive folder.

• Download-pubmed adds a second retry attempt, reports failure.

• Erase and repopulate local archive now that 2023 PubMed is released.

Version 18.4: December 5, 2022
• Warning printed if expected and actual counts from SOLR backend disagree.

• Added -verbose flag to show details of SOLR truncation workaround.

• Elink -cited and -cites instantiate results in message due to epost issue.

• Phrase-search -link CITED and CITES logic improved for faster lookup.

Version 18.3: December 2, 2022
• Renamed recent colliding variable in SOLR truncation limit workaround code.

• Changed SOLR code to work with Debian and Ubuntu shell variants.

• Local links fields now index zero-padded PMIDs to prepare for speed improvement.

• Download-ncbi-data retrieves 2023 release of MeSH files.

Version 18.2: November 23, 2022
• Code modified to support newly-deployed SOLR backend for PubMed database.

• Added -quick flag to esearch, elink, and efetch to override truncation limit workaround.

138 Entrez Programming Utilities Help

• Added -chunk argument to elink and efetch to control internal batch size.

• Nquire -len returns Content-Length of HTTP file without downloading.

• Xtract -prose removes HTML decorations and converts newlines to spaces in PMC paragraphs.

• Xtract -sort now handles unsigned real numbers with a decimal point.

• Archive-pubmed -nihocc adds CITED and CITES link fields, from NIH Open Citation Collection data.

• Phrase-search -link CITED or CITES looks up links for a set of PMIDs sent through stdin.

• Archive-pubmed -scrub now removes all -extras and -nihocc postings.

Version 18.1: October 21, 2022
• Archive-pubmed -extras GENE indexing adds PREF (preferred gene name), GSYN (gene synonym), and GRIF
(gene reference-into-function) fields.

• Ref2pmid -options test uses citmatch service without requiring local archive.

Version 18.0: October 12, 2022
• Efetch -chunk overrides number of records to retrieve in each network request.

• Gbf2ref script can read EMBL/UniProt format in addition to GenBank/GenPept.

• Gbf2ref populates ATHR field with string of all authors in citation.

• Ref2pmid -options "verify" first determines if existing PMID in citation is correct.

• Ref2pmid -options "remote" calls citmatch service if local algorithm failed to find an unambiguous match.

• Use ref2pmid -options "strict,remote,verify" for best citation matching accuracy and performance.

• Edict server preload -file reads precomputed ref2pmid results, for use by nquire -edict match -citation.

• Xtract -jour calls CleanJournal to handle encoded ampersands and apostrophes.

• Download-ncbi-data -journals uses xtract -jour for better journal title cleanup.

Version 17.9: September 20, 2022
• Consolidated local archive cache maintenance functions.

• Moved first-level inverted index cache files out of Archive directory.

• Moved PubMed sentinel files to a new Sentinels directory.

• Above changes will make it feasible to have separate "live" and "next" copies of local archive files, eliminating
nightly down-time if a 2 TB solid-state drive is available.

Version 17.8: September 6, 2022
• Refactored XML parser improves speed of "parent / star" processing.

• Restored proper archiving order for adjacent versions of the same publication.

• Adjusted code for downloading desc2022.xml MeSH descriptor file.

Entrez Direct Release Notes 139

Version 17.7: August 29, 2022
• Citation matcher maps journal to standard name, checks for unresolvable ambiguity.

• Xtract -wrp delays reencoding if -replace, allowing -rep " & " instead of -rep " & ".

Version 17.6: August 15, 2022
• Recompiled with Go 1.19 for faster execution on all processors.

• Download-ncbi-data "journals" choice generates journal title lookup files with and without a leading article,
allowing both "Journal of Immunology" and "The Journal of Immunology" to match the expected "J Immunol"
record regardless of original cataloging.

• Similar ampersand expansion (of encoded " & " to " and ") is done for journal title lookup keys, but not for the
local archive JOUR index, so that it matches the current term list convention in PubMed.

• Precomputed journal tables attempt to resolve ambiguous name or alias collisions by favoring journals that are
currently indexed in MEDLINE. This removes two competing entries with "Journal of Immunology" aliases.

• Journal sets file includes multiple choices for 2671 abbreviations that cannot be resolved automatically,
separated by vertical bars, so "dmj" maps to "Danish medical journal | Diabetes & metabolism journal".

• Edict.go server adds support for remote journal title queries.

• Local archive citation matcher caches most recent unique query results to avoid repeatedly recalculating the
same reference on all components of a pop/phy/mut/eco set.

• Xtract -reg and -exp, regular expression patterns for -replace, now protected by mutex.

• Xtract -aliases reads mapping file to support -classify argument, which uses multiple whole word or phrase
substring matching to populate custom Entrez indices.

• Deprecated index-pubmed script now just calls archive-pubmed -index.

• Custom-index runs collect and expand steps, previously performed by index-pubmed.

• Added idx-affil custom indexing helper script for affiliation experiments.

• Added idx-journals to index Journal/Title in JRNL field, skipping the ISOAbbreviation, ISSN, ISSNLinking,
MedlineTA, and NlmUniqueID elements also indexed in JOUR field.

• Transmute -gbf uses file of accessions for filtering a GenBank flatfile stream.

• Speed of the (rate-limiting) -gbf flatfile partitioning step (using an uncompressed GenBank release file on a
dedicated machine) was just under 40,000 records per second. This is sufficient to support the possibility of
applying the local PubMed archive approach to the orders-of-magnitude larger set of sequence records.

• Fixed bug in RepairUnicodeMarkup that produced unbalanced symbols when runs of Unicode superscripts or
subscripts were immediately followed by another type of non-ASCII character, such as a Greek letter.

Version 17.5: August 2, 2022
• Added edict.go remote server for local archive (RESTful equivalent of phrase-search commands), with support
for search, fetch, (compressed) stream, and (citation) match operations. The -host and -port arguments override
the default "localhost:8080" address used for testing.

• Nquire -edict is a shortcut for access to a running edict server, defaulting to "localhost:8080".

140 Entrez Programming Utilities Help

• Set the NQUIRE_EDICT_SERVER environment variable to override the nquire -edict address.

• Nquire -preview is a shortcut for the upcoming PubMed SOLR server.

• Nquire -get and -url send explicit curl -X GET and -X POST arguments.

• Archive-pubmed -extras flag indexes chemical, disease, and gene references (extracted from article contents by
NCBI text mining and NLM indexing groups) as CHEM, DISZ, and GENE fields. This supersedes the index-
extras script, and only runs if any relevant data file is out of date or not yet downloaded.

• Archive-pubmed writes two independently-compressed blocks (xml+DOCTYPE header and PubmedArticle
XML record data) to each file. When streaming sets of compressed files for efficient network transfer, the headers
before each record are skipped by advancing a fixed number of bytes.

• New asn2ref script helps with citation matching from Seq-entry ASN.1 records.

• Elink internal chunk size lowered to 400 to avoid server timeouts.

• Test-eutils -preview runs the basic -alive tests on the SOLR server.

Version 17.4: July 18, 2022
• Efilter handles <Query> or <Id> items in the ENTREZ_DIRECT message.

• Archive-pubmed second-level inverted index cache moved to Increment folder.

• Downloading each PubMed ftp release file validates contents, retries on failure.

• Normalization removes combining accents in author affiliation field.

• Remaining functionality needed for full EDirect support of PubMed SOLR server includes combining queries
(in esearch) and specifying a range of output records (in efetch).

Version 17.3: June 29, 2022
• Esearch -title queries individual words with [TITL] to bypass automatic term mapping.

• Elink supports <Query> or <Id> items in the ENTREZ_DIRECT message.

• Local index restores PAIR field to accelerate inexact citation matching.

• Removed TLEN and TNUM fields from local index.

• Local archive adds xml and DOCTYPE lines to every PubmedArticle record. This will allow biopython's
Bio.Entrez subpackage to use the archive files directly.

• Fetch-pubmed removes the xml and DOCTYPE prefix from individual PubmedArticle records. A single pair
precedes the <PubmedArticleSet> wrapper.

• Fetch-pubmed -turbo places <NEXT_RECORD_SIZE> objects in front of each XML record, to allow faster
XML data extraction with xtract -turbo.

• Xtract -mirror reverses the characters in a string.

Entrez Direct Release Notes 141

Version 17.2: June 13, 2022
• Esearch passes a <Query> field in the ENTREZ_DIRECT message when using the upcoming PubMed SOLR
backend. This allows efetch to circumvent the 10,000 PMID-per-query limit by repetitive searching with a
sliding window of dynamically-resized create date ranges.

• Efetch temporarily calls "transmute -mixed -normalize pubmed" twice, as a quick fix to compensate for the
SOLR server's unexpected encoding of non-ASCII characters with the "&#x...;" construct.

• Internal esearch -count and -uids added to access PubMed SOLR without using history.

• Esearch -translate and -components now handle SOLR output variant.

• Local indexing adds bad date, future date, medline date, has abstract, and versioned to the PROP field.

• Local JOUR field now indexes MedlineTA, NlmUniqueID, and ISSNLinking values.

• Local YEAR field standardizes on 4 directory levels for all dates (e.g., /1/8/9/2/), which includes 104,824
citations from the eighteenth and nineteenth centuries.

• Run "archive-pubmed -clear -index" to refresh the inverted index cache after changes to indexing code.

• Phrase-search -totals prints the term list with document counts for the given field.

• Improved local citation matcher parsing of "in press" journal references.

Version 17.1: May 16, 2022
• Esearch -translate and -components, instead of -query, return the full query translation or the individual
translation components, respectively. For -db pubmed they show the automatic term mapping expansions.

• Archive-pubmed adds a second level of caching for faster search index rebuilding. Use -clean to remove
Inverted folder intermediate files, or -clear to also remove Archive inverted index cache files.

• Improved author name normalization and indexing of apostrophes and combining accents.

• New cit2pmid script calls "https://pubmed.ncbi.nlm.nih.gov/api/citmatch" service, or with "-local" flag
performs citation matching using EDirect local archive and search system.

• Added ncbi::edirect:Execute function to control EDirect from NCBI C++ toolkit programs.

Version 17.0: April 18, 2022
• Removed STEM field (Porter2 algorithm) from standard local indexing.

• Run rchive -e2delete "${EDIRECT_PUBMED_MASTER}/Archive" to clear the incremental cache. This is
needed to remove residual STEM postings.

• Next execution of archive-pubmed -daily will reinitialize the pre-indexed cache in under 90 minutes. Future
daily updates should take around 3 minutes.

• Archive-pubmed -index can subsequently rebuild local search indices on demand in under 2 hours.

• Xtract adds -stemmed argument to index Porter2-processed sentences.

• Use custom-index $(which idx-stemmed) STEM to manually restore stemmed index.

142 Entrez Programming Utilities Help

Version 16.9: April 7, 2022
• Recompiled with Go 1.18, which should execute faster on ARM and Apple Silicon processors.

• Nquire -pubchem, previously a legacy alias for -pugrest, is now repurposed for more convenient access to
PubChem Pathways, which replaces the retired Entrez BioSystems database.

• Xtract automatic detection of JSON input accidentally conflated the default record names for top-level objects
and arrays. Now it uses the same policy as transmute -j2x ("opt" and "anon", respectively).

• Local search index adds PROP field for publication types.

• Using parallel pgzip (de)compression library for faster search index construction.

• Archive-pubmed -daily keeps an incremental cache of pre-indexed files up to date.

• Archive-pubmed -index uses the cache to repopulate all local retrieval system files in under 3 hours,
superseding the slower index-pubmed process.

Version 16.8: March 17, 2022
• Phrase-search supports MESH queries by mapping to indexed TREE or CODE fields.

• Phrase-search reads an expandable file of JOUR field aliases (e.g., PNAS).

• Xtract -pairx extends -pairs to include isolated single words.

• Idx-pairs helper for custom-index reintroduces modified non-positional title word PAIR index.

• EDIRECT_PREVIEW environment variable allows testing of the upcoming PubMed API.

• Elink stores identifiers in ENTREZ_DIRECT message instead of history with new PubMed server.

• Efilter accepts ENTREZ_DIRECT instantiated identifiers when using the new PubMed API.

Version 16.7: March 1, 2022
• Added ds2pme script to convert PubMed DocumentSummary XML to Pubmed-entry ASN.1.

• Phrase-search adds -words (replacing -partial) and -pairs, for local index citation matching test.

• Filter-stop-words script adds optional -plus argument to support phrase-search -pairs.

• Index-pubmed script adds TLEN and TNUM indices, phrase-search can query those fields by range.

• Xtract -trim removes leading and trailing spaces, and leading zeros.

• Xtract -wct counts the number of words in a string, obeying -stops and -stems modifiers.

• Transmute -g2r (gbf2ref) tracks previously-encountered titles and authors, suppressing duplicate citations,
which allows xtract -select STAT to create non-redundant inpress or unpub subsets.

• Transmute -r2p (and ref2pmid shortcut) reads gbf2ref subsets for local citation matching.

Version 16.6: February 14, 2022
• Nquire -pugwait polls asynchronous PubChem PUG-REST searches, returning ENTREZ_DIRECT structure
with instantiated compound identifiers. (Support for this form was included in the 2020 EDirect redesign.)

Entrez Direct Release Notes 143

• Nquire -timer prints milliseconds between initial service request and completion of network data transfer.

• Xtract warns that capitalized exploration arguments (e.g., -Block), which were needed for recursive data in the
original (retired) Perl implementation, are now deprecated, and will be removed in the near future.

• Added pma2pme script to convert PubmedArticle XML to Pubmed-entry ASN.1.

• Archive-pubmed script takes optional -asn argument to save Pubmed-entry ASN.1 files in the local archive,
coexisting with the PubmedArticle XML records. Use fetch-pubmed -asn to retrieve.

• Index-pubmed script now creates indices for author (AUTH, ANUM, FAUT, LAUT, CSRT, INVR) and citation
(JOUR, VOL, ISS, PAGE, LANG) fields, eliminating the need for a separate custom-index step. To be used with
TITL, TIAB, and YEAR fields for local citation matching experiments with phrase-search script.

• Xtract modifies -plain (removal of mixed-content sections) and adds -simple (normalization of accented
letters), both derived from -basic (cleanup of superscripts and subscripts).

• Xtract repurposes -author and adds -prose, to correct commonly misused lookalike characters (sharp S and
lower-case beta) and remove accents and markup, for use in generating search indices and ASN.1.

• Xtract -auth replaces commas, periods, and hyphens to allow queries with GenBank reference authors.

• Xtract -month "PubDate/*" finds first month name or abbreviation, returning a number from 1 to 12.

• Xtract -page extracts first page (digits and letters) from a page range.

• Xtract adds -hex (hexadecimal), -oct (octal), and -acc (running total accumulator) numeric arguments.

• Xtract -element "." (period) generates text ASN.1 from customized XML records. Underscores in XML tag
names show unlabeled braces around SEQUENCE OF components (single), unquoted INTEGER or
ENUMERATED values (trailing), or alternative CHOICE selections (internal).

• Xtract -element "%" (percent) generates JSON from customized XML records. Underscores in XML tag names
show unlabeled brackets (single), named arrays in brackets (leading), or unquoted values (trailing).

• Transmute -g2r (and gbf2ref shortcut) extract reference fields from sequence flatfiles for citation matching.

• Phrase-search -partial queries title words individually and combines results for ranked matches.

• EDirect now uses a custom internal Unicode-to-ASCII conversion map.

Version 16.5: January 3, 2022
• Using efetch.fcgi instead of esearch.fcgi to retrieve UID lists, in preparation for new PubMed API.

• Nquire adds initial implementation of -puglist and -pugwait helper functions for PubChem.

• Xtract -verify raises maxDepth limit to 30 to avoid warning about depth of PMC XML records.

• Rchive -invert uses a separate map for each initial character, now runs in 1/3 less time.

• Added indexing of INVR investigators to idx-authors helper script.

2021

Version 16.4: December 20, 2021
• Nquire -pugrest -inchi silently adds "InChI=" prefix if it is missing in the argument value.

144 Entrez Programming Utilities Help

• Xtract -year "PubDate/*" construct, broken in recent refactoring, again returns a single 4-digit year.

• Separate EDIRECT_PUBMED_MASTER and EDIRECT_PUBMED_WORKING environment variables also
apply to index-extras and custom-index scripts.

Version 16.3: December 15, 2021
• Esummary -format docsum has a clearer "redundant argument" message.

• Efilter -db assembly adds -status shortcut.

• Nquire adds -pugrest and -pugview shortcuts for PubChem Power User Gateway services.

• Nquire allows Windows version of curl to recognize Cygwin paths.

• Xtract supports multiple -insd feature clauses for output on a single line.

• Xtract -insd source taxid qualifier extracts integer from "taxon:###" db_xref.

• Xtract -accent no longer needs -strict or -mixed processing flags.

• Transmute -plain removes accents and diacritical marks from text.

• Local archive scripts use 2022 PubMed release files and 2022 MeSH data files.

• Local archive Extras directory added to store original MeSH data files and NLP downloads. Separate
environment variables (EDIRECT_PUBMED_MASTER and EDIRECT_PUBMED_WORKING) can place
Archive, Data, and Postings folders on the computer's internal drive, while keeping release files and indexing
intermediates on the external SSD.

• Renamed alternative edirect-install.sh script to update-edirect.sh.

Version 16.2: October 28, 2021
• Xtract automatically detects and processes JSON, text ASN.1, and GenBank/GenPept formats. An explicit
transmute command is only needed if you wish to inspect the intermediate XML, or to override the default
conversion arguments.

• Transmute -j2x -nest "element" choice adds "_E" suffixes to multi-dimensional array components. This is now
the default for both transmute and the xtract JSON converter, assigning a distinct tag name to each level.

• Transmute -g2x parses the DBLINK section to capture BioProject and BioSample identifiers.

• Using printf instead of echo to generate configuration commands in the install-edirect.sh script.

• Efetch -db pubmed -format uid retrieves PMIDs in chunks of 10,000 in preparation for new PubMed API.

• Added idx-metadata script for indexing JOUR, LANG, MAJR, MESH, and SUBH fields in the local archive.

• Added edirect.py module file for import by Python programs. Use edirect.execute to run individual EDirect
commands, Unix tools, or shell scripts, controlling multiple steps by passing the previous result to the next
command. Or use edirect.pipeline to launch a chain of several commands contained in a single argument. An
edirect.efetch shortcut that takes named arguments is also provided.

Version 16.1: October 13, 2021
• Efetch -strand argument can accept "\+" or "\-". The leading backslash is required.

Entrez Direct Release Notes 145

• Efetch -express flag works like -immediate, but on several sequence records at a time.

• Nucleotide accession lookup is only needed for master sequences.

• Epost looks up all nucleotide accessions to silently skip replaced records.

• Xtract -self applies a default value to allow detection of empty self-closing tags.

• Xtract uses both time interval and record count to trigger an output buffer flush.

• Minor refactoring of xtract argument parsing code.

• Removed obsolete setup.sh script.

• Updated cacert.pem file.

Version 16.0: October 4, 2021
• Xtract -insd feat_intervals is a version of feat_location that generates 0-based positions.

• Transmute -extract accepts -0-based and -1-based modifiers, defaulting to the 1-based feat_location form.

• The eutils.SequenceExtract library function has a new isOneBased boolean argument.

• Added fuse-segments to the set of scripts for post-processing magicblast -outfmt asn.

• Renamed uniq-columns script to uniq-table.

Version 15.9: September 27, 2021
• Redesigned install-edirect.sh script, which no longer calls setup.sh.

• Alternative edirect-install.sh script does not offer to edit configuration files.

• Installation prints PATH command to use for current terminal session.

• Successfully installed and ran test-eutils and test-edirect on Cloud.

• Minor refactoring of xtract -element variant code.

• Modified snp2hgvs script to remove records where the Id and SNP_ID do not match.

Version 15.8: September 16, 2021
• Efetch -db clinvar leaves VCV prefix for -format vcv.

• Added gene column to spdi2tbl component of snp2tbl.

• Renamed spdi2prod script to tbl2prod, now reads output of snp2tbl.

• Xtract -hgvs allows R and Y nucleotide ambiguity characters.

• Xtract -author replaces commas and periods in GenBank reference authors.

• Refactored eutils.FASTAConverter into tokenizer and streamer components.

• Added uniq-columns script.

Version 15.7: September 9, 2021
• Efetch -immediate flag avoids memory overflow on sets of extremely large sequences.

146 Entrez Programming Utilities Help

• Efetch -format fasta chunk size reduced to 50 records at a time.

• Xtract -backward presents elements in reverse order.

• Modified spdi2prod script to print "wild-type" protein and CDS translation.

• Renamed filter-table script to filter-columns.

• Moved all help text to a new help subfolder.

• Recompiled with Go 1.17, which generates smaller binaries that execute faster.

Version 15.6: September 1, 2021
• Added datasets and sra-toolkit choices to download-ncbi-software script.

• Added efilter -keyword and -purpose shortcuts for "purposeofsampling" keywords.

• Restored missing efilter -pub and -released shortcuts.

• Xtract -ncbi2na and -ncbi4na functionality available in common eutils library.

• Added vendor option to Go build.sh scripts to cache source code for all external library dependencies.

Version 15.5: August 16, 2021
• Documentation introduces Go compiled language, dependency management with modules, and EDirect's local
eutils library package.

• Now including go.mod and go.sum module files for eutils and cmd project directories.

• Transmute -counts implements Go base count example.

• Added xml2fsa script for converting INSDSeq XML to FASTA.

• Xtract -fasta, used by xml2fsa script, now generates conventional 70 uppercase characters per line.

• Xtract -element "~" for object contents joins "?" for object name.

• Added download-ncbi-software script, initially for magic-blast on linux, macosx, and win64 platforms.

• Added blst2tkns, split-at-intron, fuse-ranges, and find-in-gene scripts for merging overlapping reference
coordinate matches from magicblast -outfmt asn.

• Nucleotide accession lookups may use [PACC] or [ACCN] fields.

• Nquire supports NQUIRE_IPV4 environment variable for diagnosing suspected IPv6 problem.

Version 15.4: July 16, 2021
• Added efilter -source select as shortcut for RefSeq Select dataset.

• Efetch -id removes PMC prefix in front of PubMed Central identifiers.

• Transmute -align -a argument adds m choice for using commas to separate integers into groups of 3 digits.

• Added transmute -align -w argument to specify minimum width for all columns.

• Improved scripting introduction in automation section of documentation.

Entrez Direct Release Notes 147

Version 15.3: June 21, 2021
• Transmute -separate replaced by -combine, default is not to remove internal top-level objects, which result
from retrieving large sets of data in smaller chunks.

• Added transmute -search for finding positions of patterns in sequence data (e.g., restriction sites), -circular flag
allows match to pattern spanning origin of circular molecule.

• Added disambiguate-nucleotides script to expand degenerate base letters for restriction enzymes like AccI.

• Added transmute -find for searching non-sequence text that includes digits, spaces, and punctuation, -relaxed
flag ignores spacing differences, punctuation.

• Added idx-words helper script to split words at punctuation for indexing [WORD] field.

• Local indexing speed improvements.

• Removed deprecated rchive -phrase function, not needed with positional indices.

Version 15.2: June 3, 2021
• Expand-current prepares decompressed nonredundant PubMed archives with xtract -index, which places
<NEXT_RECORD_SIZE> objects in front of each XML record.

• Xtract -turbo uses precomputed <NEXT_RECORD_SIZE> information to double the speed of the (rate-
limiting) partitioning step, allowing additional CPU cores to participate in XML data extraction.

• Added custom-index, which calls a user-supplied helper script to build an initial PMID-term index, and then
completes the inversion and posting steps to integrate the new field into the local search system.

• Added idx-author sample helper script, with boilerplate xtract instructions for generating an IdxDocument set,
and specific commands for populating a novel [ANUM] index.

• Rchive -invert converts input strings to lower-case if that was not already done in the indexing step.

• Added xtract -includes, like -contains but requiring the substring match to align on word boundaries.

• Index-pubmed adds a new [TITL] field, which indexes only the article title.

• Phrase-search -title performs an exact search on the local [TITL] field.

• Index-pubmed replaces the [NORM] field with [TIAB], the conventional code for title and abstract. Legacy
queries using [NORM] will be internally redirected to [TIAB].

• README and readme.pdf files are more concise, with several sections now residing only in the more detailed
web documentation.

Version 15.1: May 20, 2021
• Xtract and transmit now run as native executables on Apple Silicon machines.

• Setup.sh script can add edirect folder to PATH in both .bash_profile and .zshrc for MacOS.

• Documented efetch and elink reading large lists of identifiers from stdin or file, bypassing need for epost.

• Nquire supports -ncbi, -eutils, and -pubchem URL shortcuts.

• Nquire uses --cacert instead of --capath in curl command.

148 Entrez Programming Utilities Help

• Efetch -db snp uses -format -self flag to keep self-closing attribute-free PAIRED or SINGLE items in XML.

• SNP processing adds Gene, Hgvs, and Spdi fields, and (when different from Id) adds OldId field.

• Added transmute -codons to display nucleotide codons above protein residues.

• Transmute -a2x, -c2x, -g2x, -j2x, and -t2x have shortcut scripts asn2xml, csv2xml, gbf2xml, json2xml, and
tbl2xml, respectively.

Version 15.0: April 29, 2021
• Removed edirect.pl and setup-deps.pl scripts containing original Perl implementation.

• Deprecated -oldmode and -newmode arguments, and USE_NEW_EDIRECT environment variable.

• Simplified -hgvs output structure, and converted to 0-based positions for SPDI processing.

• Added snp2hgvs script as shortcut for -hgvs extraction from SNP docsum.

• Added hgvs2spdi script to adjust CDS-relative -hgvs offsets into sequence-relative positions suitable for use by
transmute -replace.

• Added spdi2prod script to pair modified NM translation with modified NP sequence.

• Added snp2tbl script to produce tab-delimited table of adjusted SNP values in one step.

• Transmute -replace and -extract use -lower to specify lower-case output.

• Transmute -g2x writes INSDAltSeqItem_first-accn and INSDAltSeqItem_last-accn objects for WGS master.

• Xtract -pkg and -enc XML generators accept multiple slash-delimited object names.

Version 14.9: April 15, 2021
• EDirect runtime errors display an "ERROR:" tag in inverse bold red text on the terminal.

• Efetch -id now works on WGS master accessions in nucleotide databases.

• Lookup of rs/ss numbers supported in -id argument for -db snp.

• Epost uses chunks of 1000 to avoid server truncation.

• Transmute -hgvs parsing now supports ".g" genomic and ".c" coding sequences, in addition to ".p" proteins. The
".c" item location uses <Offset> rather than <Position>, since it is relative to the first base of the CDS initiation
codon, not the sequence. Additional operations will be required to adjust this value for SPDI processing.

• The next release will retire the edirect.pl and setup-deps.pl scripts, and will ignore the old/new mode
arguments and environment variable.

Version 14.8: March 24, 2021
• Esearch has improved logic to recognize [FILT], [PROP], and [ORGN] controlled-vocabulary phrases without
the need for extra quotation marks to protect the query.

• Elink runs -cmd acheck to confirm empty history result, can detect stale links to deleted records.

• Elink writes structured message on empty history input to avoid breaking pipeline of multiple link operations.

• Nquire adds -dir command to show ftp directory listing with column of file sizes.

Entrez Direct Release Notes 149

• Blank lines are ignored by sort-uniq-count, sort-uniq-count-rank, and sort-table scripts.

• Removed eblast script after URL-based BLAST service was disabled.

• Use of edirect.pl script (through -oldmode command-line argument or USE_NEW_EDIRECT=false
environment variable setting) prints DEPRECATED warning message.

Version 14.7: March 8, 2021
• Xtract -insd handles qualifiers without values (e.g., pseudo, transgenic).

• Xtract -insd adds feat_location qualifier to print feature intervals.

• Transmute -extract reads xtract -insd feat_location interval format.

• Transmute -remove -first and -last arguments can use sequence letters instead of count.

• Efetch -format ipg processes potentially large records one at a time.

• Error message printed if non-integer -id argument is used with -db taxonomy.

• Nquire -dwn and -asp file download failure report improved.

• Refactored common.go and transmute.go functions into reusable local "eutils" package.

• Go compiler uses "replace eutils => ../eutils" line in go.mod file to import from local eutils package.

• Transmute -degenerate > gdata.go recreates library file with updated genetic code mapping tables.

• Removed obsolete and deprecated scripts.

• Added sort-table, filter-table, and print-columns scripts.

• Revised eblast script as prelude for running on cloud.

Version 14.6: February 3, 2021
• Transmute -cds2prot added to translate coding regions with nucleotide substitutions.

• Transmute -revcomp and -molwt added, sharing code with xtract functions.

• Transmute -remove, -retain, and -replace allow script-driven editing of sequences and insertion of SNP bases,
with argument values obtained by -hgvs parsing of HGVS data.

• Transmute -diff simplifies visualization of sequence point mutations.

• Esearch and efilter enforce restriction of -country shortcut to sequence databases.

Version 14.5: January 19, 2021
• Added -hgvs support for genomic single nucleotide substitutions.

• Sort by RefSeq accession numbers within categories of -hgvs output.

• Updated efilter -db snp -class frameshift mapping to FXN entry.

• Updated test-eutils upon retirement of Entrez sparcle database.

• Updated Amino Acid Substitutions example.

• Added Reference Formatting example.

150 Entrez Programming Utilities Help

• Xtract -replace uses -reg and -exp values for regular expression substitution.

Version 14.4: January 13, 2021
• HGVS format parsed into XML by xtract and transmute -hgvs commands. Initial implementation supports
amino acid missense and nonsense variations. More coding to follow.

• Transmute -align -a argument adds z choice for padding numbers with leading zeros.

• Fixed bug in efetch -start and -stop subrange arguments.

• Restored trailing newline lost in switch from echo to printf.

Version 14.3: January 7, 2021
• Major overhaul of EDirect documentation completed.

• Release notes and additional examples moved to separate web pages.

• Xtract -doi cleans DOI data and generates complete URL.

• Transmute -align -a argument adds n and N choices for aligning to decimal point.

• Added align-columns script as preferred front-end to transmute -align.

• Transmute -j2p works on a concatenated stream of JSON records.

• Transmute -aa1to3 and -aa3to1 amino acid abbreviation converters added for HGVS processing.

• Improved lookup of accessions in -id argument, now includes 21 Entrez databases with 10 fields.

• Improved code that maps PDB protein accessions with case-sensitive chain letters.

• Efetch -db bioproject no longer converts formats in order to handle accession input.

• Efetch -format fasta adds newline if missing before angle bracket.

• Uses printf "%s" instead of echo to avoid misinterpreting backslash in retrieved records.

• Nquire keeps error messages from leaking into output file.

• Confirmed that EDirect will run on Apple Silicon under Rosetta translation environment.

2020

Version 14.2: December 14, 2020
• Transmute -normalize now handles unexpected DocumentSummary attributes.

• Transmute -t2x -heading takes tags from columns in first row of file.

• Transmute -align converts a tab-delimited table to columns padded with spaces.

• Nquire -raw does minimal URL encoding for GeneOntology query.

• Efetch -db bioproject maps -format docsum to -format xml.

• Download-ncbi-data script updated to use desc2021.xml and supp20201.xml for mesh lookup table.

Entrez Direct Release Notes 151

Version 14.1: November 30, 2020
• Nquire always uses new implementation.

• Scripts updated to use new nquire features.

• Efetch and esummary warn about -db mismatches and collisions between -format choices.

• Efetch supports PDB accessions with case-sensitive chain letters in the -id argument for -db protein.

• Efetch supports GCA and GCF accessions in the -id argument for -db assembly.

• Esearch -mindate and -maxdate can be used alone, with defaults filling in the missing argument.

• Xtract -set, -rec, -pkg, and -enc shortcuts join -wrp for creating XML objects at appropriate levels during XML
generation.

• Xtract -head can read separate arguments for individual column headings.

• Xtract uses double-hyphen to append value into variable.

Version 14.0: November 12, 2020
• Redesigned EDirect active by default, deselected by running "export USE_NEW_EDIRECT=false" to set
environment variable.

• Old implementation also chosen by adding -oldmode as the first argument to individual efetch, efilter, einfo,
elink, epost, esearch, esummary, and nquire commands.

• Automatic retry supported on empty result for all formats, not just structured data.

• Esearch protects [PROP], [FILT], and [ORGN] queries in biological databases from parsing artifact on
controlled vocabulary entries with embedded "or" and "not".

• Efetch adds -showgaps flag.

• Xtract -wrp causes angle brackets, ampersands, quotation marks, and apostrophes to be reencoded in the new
XML, without the need for explicitly using -encode.

• Xtract formatting, modification, normalization, and conversion functions moved to transmute, with old calls
automatically redirected to avoid breaking user scripts.

• Transmute -format takes optional -comment and -cdata flags to keep XML comments and CDATA blocks.

• Transmute -a2x converts text ASN.1 data to XML.

• Xtract -ncbi2na and -ncbi4na decompress nucleotide sequence converted from text ASN.1 hex representation.

Version 13.9: September 14, 2020
• Xtract -fasta splits long sequences into groups of 50 letters.

• Xtract -select restores -in to indicate name of identifier file.

• Redesigned EDirect selected by running "export USE_NEW_EDIRECT=true" to set environment variable.

• New implementation also chosen by adding -newmode as the first argument to individual efetch, efilter, einfo,
elink, epost, esearch, esummary, and nquire commands.

152 Entrez Programming Utilities Help

Version 13.8: August 27, 2020
• Deprecated econtact and eproxy utilities.

• Deprecated -alias argument.

• Added accn-at-a-time and skip-if-file-exists scripts.

• Xtract -g2x converts GenBank and GenPept to INSDSeq XML.

• Xtract -c2x is a CSV (comma-separated values) variant of -t2x.

Version 13.7: May 28, 2020
• Removed xtract -repair shortcut for -unicode conversion.

• Xtract -decode supports direct Base64 decoding.

• Xtract -normalize added for Efetch post-processing.

Version 13.6: April 17, 2020
• Efilter -db snp -class shortcuts mappings updated to reflect changes to FXN index.

• Xtract adds -matches and -resembles string conditional tests, -order string processing command.

• Minor change to term granularity for MeSH [TREE] index creation.

Version 13.5: February 21, 2020
• Xtract -select -streaming uses case-insensitive test, concurrent processing.

• Minor change to term granularity for reenabled [CODE] index creation.

Version 13.4: February 4, 2020
• Local [CONV] term list indexes GNBR theme plus relationship plus identifier pair.

• Theme indexing splits genes at semicolons, adds M prefix to OMIM, H to ChEBI identifiers.

• Run "source theme-aliases" to load commands for navigating theme identifier connections.

Version 13.3: January 28, 2020
• Index-extras downloads newest version of Global Network of Biomedical Relationships theme data.

• Xtract -contour replaces -synopsis -leaf variant.

Version 13.2: January 7, 2020
• Expand-current can be run after archive-pubmed as well as index-pubmed.

2019

Version 13.1: December 30, 2019
• Local index only builds TREE fields for A, C, D, E, F, G, and Z categories.

• Stop word list now includes "studies" and "study" in addition to "studied".

Entrez Direct Release Notes 153

• Xtract -select driver file command names changed to -retaining, -excluding, and -appending.

• New efetch -format types documented for -db clinvar.

• Updated MeSH tree category descriptions in phrase-search -help.

Version 13.0: December 16, 2019
• Xtract -histogram collects data for sort-uniq-count on entire set of records.

• Xtract -wrp with empty string or dash resets -sep, -pfx, -sfx, -plg, and -elg customization values.

• Xtract -fwd and -awd print once before and once after a set of object instances.

• Xtract -t2x uses asterisk before column name to indicate XML contents, will not escape angle brackets in
string.

Version 12.9: December 9, 2019
• Xtract -plain, an -element variant that removes embedded mixed-content markup, now also converts Unicode
subscripts/superscripts, cleans bad spaces.

• Xtract -select -in changed to -select -using.

• Xtract -select -adding matches by identifier and appends XML metadata.

• Xtract -select -merging requires original records and identifier-metadata file to be in same order.

• Moved xtract -examples text to separate hlp-xtract.txt file.

• Efetch -format asn maps to -format asn.1.

• Disabled building of [CODE] field in local index.

• Minor changes to term granularity for faster local index creation.

• Index-pubmed takes optional [-collect | -index | -invert | -merge | -promote] argument to resume processing in
an intermediate step.

Version 12.8: December 3, 2019
• Xtract -molwt sequence processing command added.

• Xtract -len triggers -def instead of returning 0 for missing object.

• Xtract -pairs does not drop the first component of hyphenated terms (e.g., site-specific).

• Xtract -synopsis with optional -leaf argument only reports content nodes.

• Adjusted test-eutils -esummary dbvar test.

• Local archive asks user to check TRIM status on slow update.

• Local archive checks that volume is actually a solid-state drive.

Version 12.7: November 21, 2019
• Local archive detects slow performance, reminds user about antivirus scanning and content indexing.

• Local archive warns if Mac file system is not APFS, prints instructions on how to reformat drive.

154 Entrez Programming Utilities Help

• Xtract -examples adds namespace prefix and Base64 decoding example.

• Efetch -db nucleotide/nuccore -style withparts/conwithfeat processes -id accession list one record at a time.

Version 12.6: November 15, 2019
• Added support for automatic fallback to IPv4.

• Xtract -insd adds mol_wt as a synonym for calculated_mol_wt.

• Changed granularity of local index for [YEAR] field.

• If archiving is slow, ask user to ensure that antivirus scanning and content indexing are disabled.

Version 12.5: November 6, 2019
• Efetch -start and -stop subset retrieval arguments are now documented.

• Efetch -format docsum rescues uid attribute if no existing <Id> tag, now using case-sensitive test to prevent
<id> from blocking.

• Added efetch -revcomp flag, sets -strand 2.

• Einfo sorts -fields and -links results by tag name.

• Fixed stdin-vs-argument bug in ftp-cp introduced when moving code into edirect.pl for Anaconda issue.

• Local search system [THME] field also indexes disambiguated themes - Jc (chemical-disease) and Jg (gene-
disease) - under original code J (role in disease pathogenesis).

Version 12.4: October 28, 2019
• Expanded README file to cover more advanced features of potential interest to codeathon participants.

• Elink -released also accepts four-digit year.

• Local search system builds separate [CODE] and [TREE] indices for MeSH code and hierarchy values.

Version 12.3: October 23, 2019
• Added single-line copy-and-execute commands, in curl and wget flavors, as convenient options for EDirect
installation.

• Elink -db pubmed supports -cited and -cites to follow reference connections from the NIH Open Citation
Collection dataset.

• Added missing retry code to esearch and esummary.

• Xtract -t2x converts tab-delimited table to XML.

• Xtract -sort rearranges records by designated identifier.

• Xtract -split breaks up a large XML stream into multiple files.

• Xtract -chain changes_spaces_to_underscores.

• Efetch -db gtr -format docsum -mode json downloads in smaller groups to avoid timeouts.

• Nquire -get does not need -url command if followed immediately by URL argument.

Entrez Direct Release Notes 155

• Consolidated code for perl-based commands (e.g., nquire, transmute) into master edirect.pl script.

• Wrappers to all perl-based commands now handle conflict with Anaconda installation.

• Moved external resource indexing code from xtract to rchive.

• Added phrase-search -filter command to pipe efetch -format uid results into local query.

• Download-ncbi-data script updated to use desc2020.xml and supp2020.xml for mesh lookup table.

• Experimental index-extras script loads natural language processing results into local retrieval system.

• Experimental fetch-extras scripts retrieves indexed NLP fields per PMID saved in local archive.

Version 12.2: September 27, 2019
• Added install-edirect.sh script, with download link in web documentation, for easier installation.

• Updated setup.sh script to ask permission to edit the PATH setting in the user's .bash_profile file.

• Xtract -is-before and -is-after tests compare order of strings.

• Xtract -mul, -div, and -mod numeric processing commands added.

Version 12.1: August 29, 2019
• Local query index now creates field-specific subdirectories immediately below Postings folder.

• Term position index files, needed for phrase and proximity searching in [NORM] and [STEM] fields, not made
for [CODE] and [YEAR].

• Phrase-search -terms [field] prints complete term list for given field.

• Rchive -help gives example of how to sequentially ascend the MeSH [CODE] hierarchy index.

• Added expand-current script, to be run after index-pubmed, to prepare for fast scanning of all PubMed
records.

• Added -repeat option to test-eutils monitoring script.

Version 12.0: August 14, 2019
• Efetch adds -format bioc for -db pubmed and -db pmc, retrieving annotated records from PubTator Central.

• Added download-ncbi-data script to consolidate and replace special-case scripts.

Version 11.9: August 5, 2019
• Updated test-eutils driver files due to retirement of unigene.

• Test-eutils progress line prints a period for success, x for failure.

• Test-eutils -timer prints response times in milliseconds for each query.

• Added exclude-uid-lists script.

• Added download-pmc-bioc script.

• Nquire supports -bioc-pubmed and -bioc-pmc shortcuts.

156 Entrez Programming Utilities Help

• Fetch-pubmed -fresh generates uncompressed PubMed files from local archive for fast data extraction.

• Index-pubmed retains compressed PubMed intermediate files for batch scanning.

• Xtract supports -select parent/element@attribute^version -in file_of_identifiers.

Version 11.8: July 23, 2019
• Xtract -j2x converts newline to space, compresses runs of spaces.

• Xtract -j2x supports JSON null tags.

Version 11.7: July 3, 2019
• Efetch -format docsum -mode json reads 500 records at a time, in conformance with the server limit.

• Fetch-pubmed -all sequentially streams all live records from the local cache.

• Xtract -plain removes embedded mixed-content markup tags.

• Added download-pmc-oa to fetch the open-access subset of PubMed Central.

Version 11.6: June 11, 2019
• Xtract -path implementation was simplified.

• Einfo -db all returns a combined eInfoResult XML, containing field and link names, and record and term
counts, for all Entrez databases in one operation.

Version 11.5: June 7, 2019
• Xtract -is-equal-to and -differs-from conditional arguments compare values in two named elements.

Version 11.4: May 23, 2019
• Efetch -db snp -format json reads 10 records at a time for the initial server deployment.

• Updated SNP examples to use efetch -format json and xtract -j2x.

• Added Genes in Pathways example.

• Added xml2tbl script.

Version 11.3: May 3, 2019
• Xtract -j2x converts JSON stream to XML suitable for -path navigation.

• Xtract -format -self retains self-closing tabs with no attributes.

• Esample replaces xtract -samples.

Version 11.2: April 15, 2019
• Efetch -db snp only supports -format docsum and -format json.

• Efilter -db biosystems has -kind and -pathway shortcuts.

Entrez Direct Release Notes 157

Version 11.1: April 3, 2019
• Xtract optimizes performance for 6 CPUs with hyperthreading.

Version 11.0: March 11, 2019
• Xtract -path generates exploration commands from dotted object path.

• Xtract -format -separate retains internal </parent><parent>.

Version 10.9: February 1, 2019
• Xtract -insd supports a sub_sequence qualifier that uses -nucleic and produces upper-case sequence.

• Xtract now has an -is-within string conditional test.

Version 10.8: January 20, 2019
• EDIRECT_DO_AUTO_ABBREV environment variable restores relaxed matching of command-line
arguments.

• Efilter shortcut -journal added for -db pubmed.

• Efilter -pub last_* shortcuts moved to -released.

• Efilter -pub and -feature can take comma-separate list of choices.

• Transmute -docsum command added.

• Transmute -decode and -encode commands renamed to -unescape and -escape.

• Transmute -decode64 and -encode64 commands added.

Version 10.7: January 14, 2019
• Xtract -nucleic uses bracketed range direction to determine whether to reverse complement the sequence.

2018

Version 10.6: December 13, 2018
• Local archive script creates command for saving data path in configuration file.

• Xtract -reverse returns -words output in reverse order.

• Efilter shortcut added for -db snp (e.g., -class missense).

• Efetch -format gbc (INSDSeq XML) supports -style withparts and -style conwithfeat.

Version 10.5: December 4, 2018
• EDirect commands and pipelines support faster access with API keys.

• Xtract attributes can be delimited by quotation marks or apostrophes.

• Transmute -encode and -decode commands added.

• Simplified processing of local inverted index intermediate files.

158 Entrez Programming Utilities Help

Version 10.4: November 13, 2018
• Rchive local indexing code refactored for faster performance.

• Xtract -deq deletes and replaces queued tab separator after the fact.

• Efilter -organism queries in [ORGN] field if argument is not in shortcut list.

Version 10.3: November 1, 2018
• Rchive -invert, -merge, -promote, and -query steps make better use of multiple processor cores.

• New phrase-search script replaces local-phrase-search.

Version 10.2: October 15, 2018
• Transmute -x2j joins -j2x to simplify the use of JSON-based services.

• Efetch -json converts adjusted XML output to JSON as a convenience.

• Xtract tag alphabet expanded to accommodate converted JSON data.

• Nquire -ftp takes server, directory, and filename arguments, sends data to stdout.

Version 10.1: October 9, 2018
• Xtract -mixed improves support for mixed-content XML.

Version 10.0: September 27, 2018
• Efilter can search for sequence records by sample collection location (e.g., -country "canada new brunswick").

• Xtract parsing code was refactored in preparation for improvements in handling mixed-content XML data.

• Added transmute script for format conversions (e.g., -j2x for JSON to XML).

Version 9.90: September 17, 2018
• Normalized archive path for low-value PMIDs in preparation for incremental indexing.

Version 9.80: September 4, 2018
• Xtract XML block reader can run on separate thread for improved performance on computers with surplus
processor cores.

• Fixed bug in string cleanup when text starts with a non-ASCII Unicode character.

• Efetch regular expression pattern for detecting mixed-content tags was adjusted.

Version 9.70: August 22, 2018
• Local archive builds parallel stemmed and non-stemmed indices of terms in the title and abstract.

• Rchive and local-phrase-search use -query for evaluation of non-stemmed terms, -search for evaluation using
the stemmed index.

Entrez Direct Release Notes 159

Version 9.60: August 9, 2018
• Local archive script removes newlines inside PubMed text fields.

• Efetch adds missing newline at end of PubmedArticleSet XML.

Version 9.50: July 30, 2018
• Local indexing scripts adjusted to accommodate projected range of PMID values.

• Fixed inconsistency in positional indexing of terms with embedded non-alphanumeric characters.

• EDIRECT_PUBMED_WORKING environment variable keeps local archive intermediate files on a separate
volume.

• Rchive and local-phrase-search use -exact to round-trip ArticleTitle contents without interpretation as a query
formula.

Version 9.40: July 18, 2018
• Xtract handles misplaced spaces in attributes.

• Xtract -format repairs misplaced spaces in attributes.

Version 9.30: July 9, 2018
• Local data indexing retains intermediate products, allows rapid streaming of non-redundant current records.

• Index preparation removes apostrophe in trailing 's possessives.

• Wildcard minimum varies with prefix-driven posting character depth.

Version 9.20: June 26, 2018
• Portability and efficiency improvements to local data cache scripts.

• Xtract handles misplaced spaces in self-closing tags.

Version 9.10: June 18, 2018
• Added Parent/* element exploration construct to xtract.

• Xtract -year reliably obtains the year from "PubDate/*".

Version 9.00: June 6, 2018
• Fetch-pubmed -path supplies missing Archive directory if root path is given.

• Efetch cleanup of MathML markup properly handles parentheses.

Version 8.90: June 4, 2018
• Xtract -transform and -translate allow data value substitution.

• Xtract -wrp simplifies wrapping of extracted values in XML tags.

160 Entrez Programming Utilities Help

Version 8.80: May 29, 2018
• Efetch removes MathML tags from PubmedArticle XML contents, unless the -raw flag is used.

Version 8.70: May 14, 2018
• Local phrase indexing now uses positional indices instead of adjacent overlapping word pairs.

• Xtract -select uses conditional expressions to filter records.

Version 8.60: April 26, 2018
• Efetch -format uid pauses between groups, retries on failure.

• Fetch delay drops from 1/3 to 1/10 second if API key is used.

• Local phrase indexing uses smaller files to avoid memory contention.

• Phrase index removes hyphens from selected prefixes.

Version 8.50: April 13, 2018
• Efetch markup tag removal modified after change in server.

• Xtract -phrase filter split into -require and -exclude commands.

Version 8.40: April 9, 2018
• Efetch removes markup tags in all PubMed XML.

• Xtract without -strict prints warnings if markup tags are encountered.

• Xtract proximity search moved from -matches to -phrase.

Version 8.30: April 4, 2018
• Xtract is now available for ARM processors.

Version 8.20: March 12, 2018
• Minor changes to local record archiving scripts.

Version 8.10: March 2, 2018
• Xtract -strict and -mixed support MathML element tags in PubmedArticle XML.

Version 8.00: February 26, 2018
• Efetch -raw skips database-specific XML modifications.

• Added local-phrase-search script.

• Xtract -strict, -mixed, and -repair flag speed improvements.

Version 7.90: February 1, 2018
• Minor change to installation commands for tcsh.

Entrez Direct Release Notes 161

Version 7.80: January 12, 2018
• Updated setup.sh script with additional error checking.

2017

Version 7.70: December 27, 2017
• Added archive-pubmed script to automate local record archiving.

Version 7.60: November 15, 2017
• Epost -id numeric argument bug fixed.

• Xtract conditional tests can now use subrange specifiers.

• Xtract -strict and -mixed use separate -repair flag to normalize Unicode superscripts and subscripts.

Version 7.50: October 31, 2017
• Setup instructions now work with the tcsh shell.

• API key value is taken from the NCBI_API_KEY environment variable.

• Efetch -format gb supports -style withparts and -style conwithfeat.

• Xtract supports optional element [min:max] substring extraction.

• Xtract -position supports [first|last|outer|inner|all] argument values.

• Added prepare-stash script for local record archive.

Version 7.40: September 27, 2017
• Xtract -hash reports checksums for local record archiving.

• Initial support for API keys.

Version 7.30: September 6, 2017
• Modified stash-pubmed script to work around Cygwin artifact.

• Removed unpack-pubmed script.

• Xtract -archive replaces -stash for local record archiving.

• Xtract -gzip allows compression of archived XML records.

Version 7.20: August 28, 2017
• Added download-pubmed, download-sequence, unpack-pubmed, stash-pubmed, and fetch-pubmed scripts,
for experimental local record storage.

• Xtract -flags [strict|mixed] added to support new local storage scripts.

• Removed obsolete, original Perl implementation of xtract.pl.

162 Entrez Programming Utilities Help

Version 7.10: August 10, 2017
• Xtract -ascii converts non-ASCII Unicode to hexadecimal numeric character references.

• Setup script recognizes Cygwin running under the MinGW emulator.

Version 7.00: July 10, 2017
• Xtract -mixed and -strict handle multiply-escaped HTML tags.

• Efetch removes normal and escaped HTML tags from PubMed fields.

• Esearch -field processes individual query terms using the designated field, also removing stop words.

• Esearch -pairs splits the query phrase into adjacent overlapping word pairs.

Version 6.90: July 5, 2017
• Xtract -mixed replaces -relaxed, and -accent replaces -plain.

• Efetch uses larger chunks for -format uid, url, and acc.

• Esearch -log shows constructed URL and QueryTranslation result.

Version 6.80: June 8, 2017
• Modified download instructions to use edirect.tar.gz archive.

• The ftp-cp script can now read from stdin without the need for xargs.

• Rerunning ftp-cp or asp-cp only attempts to download missing files.

Version 6.70: May 8, 2017
• Added asp-cp script for faster download of NCBI ftp files using Aspera Connect.

• Xtract -strict and -relaxed handle empty HTML tag variants (e.g., and <sup/>).

Version 6.60: April 25, 2017
• Xtract -strict replaces -degloss to remove HTML <i>, , <u>, <sup> and <sub> tags from XML contents.

• Xtract -relaxed allows HTML tags in XML contents, to support current PubMed ftp release files.

• Xtract -plain removes Unicode accents.

• The setup.sh script prints an error message if it cannot fetch missing Perl modules.

Version 6.50: March 6, 2017
• Xtract -degloss replaces -html to remove HTML <i>, , <u>, <sup> and <sub> tags.

Version 6.40: March 1, 2017
• Epost detects accession.version input for sequence databases and sets -format acc.

• Xtract -html [remove|encode] converts <i> and tags embedded in XML contents.

Entrez Direct Release Notes 163

Version 6.30: February 13, 2017
• Efetch -format docsum skips GI-less sequences without summaries.

• Xtract local indexing commands moved to -extras documentation.

Version 6.20: January 30, 2017
• Xtract -limit and -index allow extraction of selected records from XML file.

Version 6.10: January 19, 2017
• Added run-ncbi-converter script for processing ASN.1 release files.

• Xtract -format flush option added.

• Removed obsolete accession-dot-version conversion code.

2016

Version 6.00: December 27, 2016
• Efetch -format docsum removes eSummaryResult wrapper.

• Fixed content truncation bug when Xtract encounters very long sequences.

Version 5.90: December 21, 2016
• Efetch and Elink readied for switch to accession-dot-version sequence identifier.

• Xtract -insd recognizes INSDInterval_iscomp@value and other boolean attributes.

• Xtract adds experimental phrase processing commands for word index preparation.

Version 5.80: December 12, 2016
• Efilter adds shortcuts for -db gene (e.g., -status alive, -type coding).

• Xtract numeric conditional tests can use an element name for the second argument (e.g., -if ChrStop -lt
ChrStart finds minus strand genes).

Version 5.70: November 30, 2016
• Xtract -format takes an optional [compact|indent|expand] argument. Processing compact XML is about 15%
faster than indent form. Using expand places each attribute on a separate line for ease of reading.

Version 5.60: November 22, 2016
• Fixed bug in -datetype argument for Esearch and Efilter.

• Added optional argument to filter-stop-words script to indicate replacement.

Version 5.50: November 16, 2016
• Efetch -id allows non-numeric accessions only for sequence databases.

• Xtract element selection no longer considers fields in recursive sub-objects.

164 Entrez Programming Utilities Help

• Xtract introduces a double-star "**/Object" construct to flatten recursive child objects for linear exploration.

• Xtract conditional tests ignore empty self-closing tags.

• Xtract -else simplifies insertion of a placeholder to indicate missing data.

Version 5.40: November 7, 2016
• Added filter-stop-words and xy-plot scripts.

Version 5.30: October 31, 2016
• Added support for ecitmatch utility.

• Added amino-acid-composition and between-two-genes scripts.

• The sort-uniq-count and sort-uniq-count-rank scripts take an optional argument (e.g., -n for numeric
comparisons, -r to reverse order).

Version 5.20: October 26, 2016
• Setup script no longer modifies the user's configuration file to update the PATH variable. Instead, it now prints
customized instructions for the user to execute. The user may choose to run these commands, but is free to edit
the .bash_profile file manually.

• Xtract deprecates -match and -avoid functions and the Element:Value conditional shortcut.

• Xtract -if and -unless commands use compound statements for conditional execution (e.g., -if Element -equals
Value).

• Colon now separates namespace prefix from element name in xtract arguments (e.g., -block jats:abstract).
Colon at start of element name matches any namespace prefix.

• Xtract -insd uses a dash as placeholder for missing field. Experimental -insdx command is deprecated.

• Precompiled versions of xtract are now provided for Darwin, Linux, and CYGWIN_NT platforms. The
appropriate executable is downloaded by the setup script.

Version 5.10: October 13, 2016
• Xtract adds -0-based, -1-based, and -ucsc numeric extraction/conversion commands for sequence positions
from several Entrez databases.

Version 5.00: September 26, 2016
• Efetch -format fasta removes blank lines between records.

• Xtract -insdx uses a dash to indicate a missing field.

• Xtract -insd no longer has blank lines between records.

• Xtract -input allows reading XML data from a file.

Version 4.90: September 14, 2016
• Epost -input allows reading from an input file instead of using data piped through stdin.

• Efilter now supports the -sort argument.

Entrez Direct Release Notes 165

• Xtract -filter can recover information in XML comments and CDATA blocks.

Version 4.80: August 9, 2016
• Xtract -insd controlled vocabularies updated.

Version 4.70: August 4, 2016
• Einfo -db request can also display -fields and -links data summaries.

• Einfo -dbs prints database names instead of eInfoResult XML.

Version 4.60: July 18, 2016
• Elink -cmd acheck returns information on all available links for a record.

• Efilter -pub structured limits to articles with structured abstracts.

Version 4.50: July 1, 2016
• Esearch and Efilter detect and report -query phrase quotation errors.

• Efilter -pub shortcut adds last_week, last_month, and last_year choices.

• Efetch sets -strand 2 for minus strand if -seq_start > -seq_stop or if -chr_start > -chr_stop.

Version 4.40: June 21, 2016
• Transitioning to use of https for access to NCBI services.

• Epost -db assembly -format acc uses [ASAC] field instead of [ACCN].

Version 4.30: June 13, 2016
• Efilter -pub preprint limits results to ahead-of-print articles.

• Xtract -pattern Parent/* construct can now process catenated XML files.

Version 4.20: May 24, 2016
• Xtract command-line argument parsing improvements.

• Nquire -get supersedes -http get.

Version 4.10: May 3, 2016
• Xtract -format removes multi-line XML comments and CDATA blocks.

Version 4.00: April 4, 2016
• Esearch adds -spell to correct known misspellings of biological terms in the query string.

• Efilter adds -spell to correct query misspellings, and -pub, -feature, -location, -molecule, -organism, and
-source shortcuts. Run efilter -help to see the choices available for each argument.

Version 3.90: March 21, 2016
• Code optimizations for increased Xtract speed.

166 Entrez Programming Utilities Help

Version 3.80: February 29, 2016
• Xtract can distribute its work among available processor cores for additional speed.

Version 3.70: February 8, 2016
• Xtract performance improvements.

Version 3.60: January 11, 2016
• The setup.sh configuration script now downloads a precompiled Xtract executable for selected platforms.

2015

Version 3.50: December 27, 2015
• Xtract reports error for element:value construct outside of -match or -avoid arguments.

Version 3.40: December 20, 2015
• Xtract -insd supports extraction from multiple features (e.g., CDS,mRNA).

Version 3.30: December 3, 2015
• Efetch -format docsum can accept a single sequence accession number in the -id argument.

Version 3.20: November 30, 2015
• Xtract supports -match conditional execution on values recorded in variables.

Version 3.10: November 18, 2015
• Efetch adds -chr_start and -chr_stop arguments to specify sequence range from 0-based coordinates in gene
docsum GenomicInfoType object.

Version 3.00: October 30, 2015
• Xtract rewritten in the Go programming language for speed. The setup.sh configuration script installs an older
Perl version (2.99) if a local Go compiler is unavailable.

• Efetch -format docsum only decodes HTML entity numbers in select situations.

Version 2.90: October 15, 2015
• Xtract warns on use of deprecated arguments -present, -absent, and -trim, in preparation for release of much
faster version.

Version 2.80: September 9, 2015
• Xtract uses the "*/Child" construct for nested exploration into recursive structures, replacing the -trim
argument.

Version 2.70: July 14, 2015
• Added entrez-phrase-search script to query on adjacent word pairs indexed in specific fields.

Entrez Direct Release Notes 167

Version 2.60: June 23, 2015
• Xtract -match and -avoid support "Parent/Child" construct for BLAST XML.

Version 2.50: April 9, 2015
• Xtract capitalized -Pattern handles recursively-defined top-level objects.

Version 2.40: March 25, 2015
• EDirect programs use the http_proxy environment variable to work behind firewalls.

Version 2.30: March 11, 2015
• Cleaned up logic in setup.sh configuration script.

• EPost -format acc works properly on protein accessions.

Version 2.20: March 4, 2015
• Xtract -match and -avoid recognize "@attribute" without element or value.

Version 2.10: February 3, 2015
• Added ftp-ls and ftp-cp scripts for convenient access to the NCBI anonymous ftp server.

2014

Version 2.00: August 28, 2014
• Introduced copy-and-paste installation commands with setup.sh configuration script.

Version 1.90: August 8, 2014
• Xtract -format combines multiple XML results into a single valid object.

• Improved suppression of 0-count failure messages with -silent flag in scripts.

Version 1.80: July 15, 2014
• EPost -format acc accepts accessions in an -id argument on the command line.

Version 1.70: April 23, 2014
• EFetch -format docsum decodes HTML entity numbers embedded in the text.

Version 1.60: April 3, 2014
• Minor enhancements to xtract -insd.

Version 1.50: March 29, 2014
• Esearch -sort specifies the order of results when records are retrieved.

• Xtract exploration arguments (e.g., -block) now work on self-closing tags with data in attributes.

168 Entrez Programming Utilities Help

Version 1.40: March 17, 2014
• Xtract -format repairs XML line-wrapping and indentation.

• Implemented -help flag to display the list of command-line arguments for each function.

Version 1.30: March 3, 2014
• Xtract -insd partial logic was corrected to examine both 5' and 3' partial flags, and the location indicator
recognizes "+" or "complete" and "-" or "partial".

Version 1.20: February 26, 2014
• Xtract -insd detects if it is part of an EDirect sequence record query, and dynamically executes the extraction
request for specific qualifier values. When run in isolation it generates extraction instructions that can be
incorporated (with modifications, if necessary) into other queries.

Version 1.10: February 10, 2014
• ESummary was replaced by "efetch -format docsum" to provide a single command for all document retrieval.
The esummary command will continue to work for those who prefer it, and to avoid breaking existing scripts.

• Xtract processes each -pattern object immediately upon receipt, eliminating the need for using xargs and sh to
split document retrieval into smaller units.

Version 1.00: February 6, 2014
• Initial public release.

2013

Version 0.00: April 23, 2013
• Initial check-in of web documentation page.

Version 0.00: March 20, 2013
• Initial check-in of edirect.pl script source code.

Entrez Direct Release Notes 169

170 Entrez Programming Utilities Help

Entrez Direct Examples
Jonathan Kans, PhD 1

Created: April 23, 2013; Updated: April 12, 2024.

Some early EDirect examples required post-processing with shell script:

 start=$((start + 1))
 stop=$((stop + 1))

or awk commands:

 awk -F '\t' -v 'OFS=\t' '{print $1, $2+1, $3+1}'

to increment 0-based sequence coordinates so that the proper region was retrieved:

 efetch -db nuccore -id $accn -format fasta -seq_start $start -seq_stop $stop

This led to -element derivatives that could do simple adjustments within an xtract command:

 -element ChrAccVer -inc ChrStart -1-based ChrStop

and to efetch arguments that could take 0-based coordinates directly:

 efetch -db nuccore -id $accn -format fasta -chr_start $start -chr_stop $stop

These helped eliminate the need for scripts to perform otherwise trivial modifications on extracted data.

More recent work allows easier after-the-fact numeric manipulation using the filter-columns:

 filter-columns '10 <= $2 && $2 <= 30'

and print-columns:

 print-columns '$1, $2+1, $3-1, "\042" $4 "\042", tolower($5), log($3), total += $2'

scripts, which accept column designators in an argument and pass them to internal awk commands. The NF
(number of fields) and NR (current record number) built-in variables can also be used, as can YR (for year) and
DT (for date in YYYY-MM-DD format).

PubMed

Author Frequency
Who are the most prolific authors on rattlesnake phospholipase?

 esearch -db pubmed -query \
 "crotalid venoms [MAJR] AND phospholipase [TIAB]" |
 efetch -format xml |
 xtract -pattern PubmedArticle \
 -block Author -sep " " -tab "\n" -element LastName,Initials |
 sort-uniq-count-rank

Placing author names on separate lines allows sort-uniq-count-rank to produce a frequency table:

Author Affiliation: 1 NCBI; Email: kans@ncbi.nlm.nih.gov.

 Corresponding author.

171

 87 Lomonte B
 77 Gutiérrez JM
 64 Soares AM
 53 Marangoni S
 43 Giglio JR
 39 Bon C
 ...

Publication Distribution
When were the most papers about Legionnaires disease published?

 esearch -db pubmed -query "legionnaires disease [TITL]" |
 efetch -format docsum |
 xtract -pattern DocumentSummary -element PubDate |
 cut -c 1-4 |
 sort-uniq-count-rank

In this case sort-uniq-count-rank reports the number of selected papers per year:

 173 1979
 102 1980
 96 1978
 92 1981
 66 1983
 ...

Using ‑year "PubDate/*" on a PubmedArticle record takes the first four-digit number it encounters, and the
result does not need to be trimmed:

 esearch -db pubmed -query "legionnaires disease [TITL]" |
 efetch -format xml |
 xtract -pattern PubmedArticle -year "PubDate/*" |
 sort-uniq-count-rank

Treatment Locations
What is the geographic distribution of sepsis treatment studies?

 esearch -db pubmed -query \
 "sepsis/therapy [MESH] AND geographic locations [MESH]" |
 efetch -format xml |
 xtract -pattern PubmedArticle \
 -block MeshHeading -if DescriptorName@Type -equals Geographic \
 -tab "\n" -element DescriptorName |
 sort-uniq-count-rank

This returns the number of articles ranked by country or region:

 660 United States
 250 Spain
 182 Germany
 168 India
 155 Taiwan
 139 Japan
 126 China
 124 France
 123 Europe
 ...

172 Entrez Programming Utilities Help

Note that England and United Kingdom will appear as two separate entries.

Indexed Date Fields
What date fields are indexed for PubMed?

 einfo -db pubmed |
 xtract -pattern Field \
 -if IsDate -equals Y -and IsHidden -equals N \
 -pfx "[" -sfx "]" -element Name \
 -pfx "" -sfx "" -element FullName |
 sort -k 2f | expand

Indexed dates are shown with field abbreviations and descriptive names:

 [CDAT] Date - Completion
 [CRDT] Date - Create
 [EDAT] Date - Entrez
 [MHDA] Date - MeSH
 [MDAT] Date - Modification
 [PDAT] Date - Publication

Digital Object Identifiers
How are digital object identifiers obtained from PubMed articles?

 esearch -db pubmed -query "Rowley JD [AUTH]" |
 efetch -format xml |
 xtract -head '<html><body>' -tail '</body></html>' \
 -pattern PubmedArticle -PMID MedlineCitation/PMID \
 -block ArticleId -if @IdType -equals doi \
 -tab "" -pfx '<p>' -doi ArticleId \
 -tab "\n" -pfx '' -sfx '</p>' -element "&PMID" |
 transmute -format

The ‑doi command extracts the DOIs and constructs URL references. The ‑pfx and ‑sfx arguments used here
enclose each PMID with a clickable link to its DOI:

 <?xml version="1.0" encoding="UTF-8" ?>
 <!DOCTYPE html>
 <html>
 <body>
 <p>
 24496283
 </p>
 <p>
 23818607
 </p>
 ...
 </body>
 </html>

Reference Formatting
How were references in the main EDirect documentation page formatted?

 efetch -db pubmed -format docsum -id 26931183 31738401 31600197 \
 29718389 14728215 11449725 8743683 31114887 23175613 |

Relevant document summary fields were collected with:

Entrez Direct Examples 173

 xtract -set Set -rec Rec -pattern DocumentSummary \
 -sep ", " -sfx "." -NM Name -clr \
 -sfx "." -SRC Source -clr \
 -pfx ":" -PG Pages -clr \
 -pfx "(PMID " -sfx ".)" -ID Id -clr \
 -group ArticleId -if IdType -equals doi \
 -pfx "https://doi.org/" -sfx "." -DOI Value -PG "(.)" -clr \
 -group DocumentSummary \
 -wrp Sort -lower "&NM" \
 -wrp Name -element "&NM" \
 -wrp Title -element Title \
 -wrp Source -element "&SRC" \
 -wrp Year -year PubDate \
 -wrp Pages -element "&PG" \
 -wrp DOI -element "&DOI" \
 -wrp Id -element "&ID" |

This generated intermediate XML with partial formatting:

 ...
 <Rec>
 <Sort>wei ch, allot a, leaman r, lu z.</Sort>
 <Name>Wei CH, Allot A, Leaman R, Lu Z.</Name>
 <Title>PubTator central: automated concept ... full text articles.</Title>
 <Source>Nucleic Acids Res.</Source>
 <Year>2019</Year>
 <Pages>.</Pages>
 <DOI>https://doi.org/10.1093/nar/gkz389.</DOI>
 <Id>(PMID 31114887.)</Id>
 </Rec>
 ...

References were sorted by the first author’s last name:

 xtract -set Set -rec Rec -pattern Rec -sort Sort |

and then printed with:

 xtract -pattern Rec -deq "\n\n" -tab " " -sep "" \
 -element Name Title Source Year,Pages DOI Id

followed by manual editing of hyphenated initials:

 ...
 Wei C-H, Allot A, Leaman R, Lu Z. PubTator central: automated concept
 annotation for biomedical full text articles. Nucleic Acids Res. 2019.
 https://doi.org/10.1093/nar/gkz389. (PMID 31114887.)
 ...

Using xtract ‑reg and ‑exp regular expressions to guide xtract ‑replace:

 efetch -db pubmed -id 31114887 -format xml |
 xtract -pattern PubmedArticle -block Author -deq "\n" \
 -element LastName -reg "[a-z .]" -exp "" -replace ForeName

can generate hyphenated initials directly from the PubmedArticle ForeName field:

 <Author>
 <LastName>Wei</LastName>
 <ForeName>Chih-Hsuan</ForeName>

174 Entrez Programming Utilities Help

 <Initials>CH</Initials>
 </Author>

by removing lower-case letters, spaces, and periods.

Nucleotide

Coding Sequences
What are the coding sequences in the Escherichia coli lac operon?

 efetch -db nuccore -id J01636.1 -format gbc |
 xtract -insd CDS gene sub_sequence

Sequence under a feature location is obtained with the ‑insd "sub_sequence" argument:

 J01636.1 lacI GTGAAACCAGTAACGTTATACGATGTCGCAGAGTATGCCG...
 J01636.1 lacZ ATGACCATGATTACGGATTCACTGGCCGTCGTTTTACAAC...
 J01636.1 lacY ATGTACTATTTAAAAAACACAAACTTTTGGATGTTCGGTT...
 J01636.1 lacA TTGAACATGCCAATGACCGAAAGAATAAGAGCAGGCAAGC...

Untranslated Region Sequences
What are the 5' and 3' UTR sequences for lycopene cyclase mRNAs?

 SubSeq() {

 xtract -pattern INSDSeq -ACC INSDSeq_accession-version -SEQ INSDSeq_sequence \
 -group INSDFeature -if INSDFeature_key -equals CDS -PRD "(-)" \
 -block INSDQualifier -if INSDQualifier_name -equals product \
 -PRD INSDQualifier_value \
 -block INSDFeature -pfc "\n" -element "&ACC" -rst \
 -first INSDInterval_from -last INSDInterval_to -element "&PRD" "&SEQ"
 }

 UTRs() {

 while IFS=$'\t' read acc fst lst prd seq
 do
 if [$fst -gt 1]
 then
 echo -e ">$acc 5'UTR: 1..$((fst-1)) $prd"
 echo "${seq:1:$((fst-2))}" | fold -w 50
 else
 echo -e ">$acc NO 5'UTR"
 fi
 if [$lst -lt ${#seq}]
 then
 echo -e ">$acc 3'UTR: $((lst+1))..${#seq} $prd"
 echo "${seq:$lst}" | fold -w 50
 else
 echo -e ">$acc NO 3'UTR"
 fi
 done
 }

 esearch -db nuccore -query "5.5.1.19 [ECNO]" |
 efilter -molecule mrna -feature cds -source refseq |

Entrez Direct Examples 175

 efetch -format gbc |
 SubSeq | UTRs

Sequences before the start codon and after the stop codon are obtained with Unix substring commands:

 >NM_001324787.1 NO 5'UTR
 >NM_001324787.1 NO 3'UTR
 >NM_001324979.1 5'UTR: 1..262 lycopene beta cyclase, chloroplastic/chromoplastic
 attatagaaatacttaagatatatcattgccctttaatcatttattttta
 actcttttaagtgtttaaagattgattctttgtacatgttctgcttcatt
 tgtgttgaaaattgagttgttttcttgaattttgcaagaatataggggac
 cccatttgtgttgaaaattgagcagctttctttgtgttttgttcgatttt
 tcaagaatataggaccccattttctgttttcttgagataaattgcacctt
 gttgggaaaat
 >NM_001324979.1 3'UTR: 1760..1782 lycopene beta cyclase, chloroplastic/chromoplastic
 attcgacttatctgggatcttgt
 ...

5-Column Feature Table
How can you generate a 5-column feature table from GenBank format?

 XtoT() {

 xtract -pattern INSDSeq -pfx ">Feature " \
 -first INSDSeqid,INSDSeq_accession-version \
 -group INSDFeature -FKEY INSDFeature_key \
 -block INSDInterval -deq "\n" \
 -element INSDInterval_from INSDInterval_to \
 INSDInterval_point INSDInterval_point \
 "&FKEY" -FKEY "()" \
 -block INSDQualifier -deq "\n\t\t\t" \
 -element INSDQualifier_name INSDQualifier_value
 }

 efetch -db nuccore -id U54469 -format gb |
 transmute -g2x |
 XtoT

Exploring the INSDSeq XML hierarchy with a ‑pattern {sequence} ‑group {feature} ‑block {qualifier} construct,
and adding proper indentation, can produce feature table submission format:

 >Feature U54469.1
 1 2881 source
 organism Drosophila melanogaster
 mol_type genomic DNA
 db_xref taxon:7227
 chromosome 3
 map 67A8-B2
 80 2881 gene
 gene eIF4E
 80 224 mRNA
 892 1458
 1550 1920
 1986 2085
 2317 2404
 2466 2881
 gene eIF4E

176 Entrez Programming Utilities Help

 product eukaryotic initiation factor 4E-I
 ...

An xml2tbl script containing this xtract command is now included with EDirect.

WGS Components
How can you get FASTA format for all components of a WGS project?

 GenerateWGSAccessions() {

 gb=$(efetch -db nuccore -id "$1" -format gbc < /dev/null)
 ln=$(echo "$gb" | xtract -pattern INSDSeq -element INSDSeq_length)
 pf=$(
 echo "$gb" |
 xtract -pattern INSDSeq -element INSDSeq_locus |
 sed -e 's/010*/01/g'
)
 seq -f "${pf}%07.0f" 1 "$ln"
 }

 GenerateWGSAccessions "JABRPF000000000" |

returns the expanded list of accessions from the WGS master:

 JABRPF010000001
 JABRPF010000002
 JABRPF010000003
 ...
 JABRPF010000061
 JABRPF010000062
 JABRPF010000063

Piping those accessions to:

 efetch -db nuccore -format fasta

retrieves the individual components in FASTA format:

 >JABRPF010000001.1 Enterococcus faecalis strain G109-2 contig00001, ...
 ACACTAATATGTGTCTTTTTAGACACTAGCTCACTAAAAAAAATAGTCATAATTTCTTCATTATTAAAAT
 CCAACAATTGTGAAATCAATTTAATATCCGATGCTTTGAAAACAACTTCTCCTTTTAATTTTTTGTAAAT
 CGTTGAAGCGGATATTGGTTGCCCGTATGCAGTCATTTCATTTGCCAACCACTCAACATTTTTTCCTTTC
 ...

Proteins in a Region
How do you get the protein records encoded in a specific region of a nucleotide sequence?

 efetch -db nuccore -id NC_015162.1 -format gb -seq_start 9125 -seq_stop 103803 |
 xtract -insd CDS protein_id |
 cut -f 2 |
 efetch -db protein -format fasta

extracts the protein_id accessions and retrieves those proteins in FASTA format:

 >WP_013615770.1 hypothetical protein [Deinococcus proteolyticus]
 MTQNASAGLTAETLMTETGLSAAAVRRALKAYDAAFGLEHPTQDGELHLTPAEYDVLRRALQLTGGYAPG
 LKLWFGEQQALALSTQPVASPREVQQLSQLYQQVESYRARPPEEPAQTLRALLDQAQALGWSGFWEMGRL
 QGAALFVLGVLRFEDGQRAKVSMQTPLSGAEALVLSRGVCALLQRVRTQPGSGQAWSWNEVLLEEVERIL
 KDLTE

Entrez Direct Examples 177

 >WP_013615771.1 hypothetical protein [Deinococcus proteolyticus]
 MNKDTNVDTAFAGGFFTTFENGECVFYDADGVCHSVTPDTVAAVVASGTPRDVVALHEDVQGRTDAVAQV
 ...

Reverse Complement GenBank
How do you reverse complement a nucleotide sequence in GenBank format?

 efetch -db nuccore -id J01749 -format gb |
 gbf2fsa |
 transmute -revcomp |
 transmute -fasta -width 50

converts GenBank to FASTA, reverse-complements the sequence, and saves it at the selected 50 characters per
line:

 TTCTTGAAGACGAAAGGGCCTCGTGATACGCCTATTTTTATAGGTTAATG
 TCATGATAATAATGGTTTCTTAGACGTCAGGTGGCACTTTTCGGGGAAAT
 GTGCGCGGAACCCCTATTTGTTTATTTTTCTAAATACATTCAAATATGTA
 ...
 ACGATGAGCGCATTGTTAGATTTCATACACGGTGCCTGACTGCGTTAGCA
 ATTTAACTGTGATAAACTACCGCATTAAAGCTTATCGATGATAAGCTGTC
 AAACATGAGAA

Reverse Complement NCBI2NA
How do you reverse complement a 2-bit encoded nucleotide sequence?

 efetch -db nuccore -id J01749 -format asn |
 xtract -pattern Seq-entry \
 -group seq -if ncbi2na \
 -block inst -LEN length -SEQ -ncbi2na ncbi2na \
 -SUB "&SEQ[:&LEN]" -REV -revcomp "&SUB" \
 -sep "\n" -fasta "&REV"

expands the NCBI2NA representation to IUPACNA, truncates at the indicated length, reverse-complements that
sequence, and saves it at the default 70 characters per line:

 TTCTTGAAGACGAAAGGGCCTCGTGATACGCCTATTTTTATAGGTTAATGTCATGATAATAATGGTTTCT
 TAGACGTCAGGTGGCACTTTTCGGGGAAATGTGCGCGGAACCCCTATTTGTTTATTTTTCTAAATACATT
 CAAATATGTATCCGCTCATGAGACAATAACCCTGATAAATGCTTCAATAATATTGAAAAAGGAAGAGTAT
 ...
 GCATAACCAAGCCTATGCCTACAGCATCCAGGGTGACGGTGCCGAGGATGACGATGAGCGCATTGTTAGA
 TTTCATACACGGTGCCTGACTGCGTTAGCAATTTAACTGTGATAAACTACCGCATTAAAGCTTATCGATG
 ATAAGCTGTCAAACATGAGAA

Six-Frame Protein Translation
How do you translate all six reading frames of a nucleotide sequence?

 efetch -db nuccore -id J01749 -format fasta |
 transmute -cds2prot -circular -gcode 11 -all

will simultaneously translate three plus-strand and three minus-strand frames, including codons that span the
origin if the molecule is circular:

 >J01749.1-1+
 FSCLTAYHR*ALMR*FITVKLLTQSGTVYE ... KCHLTSKKPLLS*H*PIKIGVSRGPFVFKN
 >J01749.1-2+
 SHV*QLIIDKL*CGSLSQLNC*RSQAPCMK ... SAT*RLRNHYYHDINL*K*AYHEALSSSRI

178 Entrez Programming Utilities Help

 >J01749.1-3+
 LMFDSLSSISFNAVVYHS*IANAVRHRV*N ... VPPDV*ETIIIMTLTYKNRRITRPFRLQEF
 >J01749.1-1-
 ILEDERAS*YAYFYRLMS***WFLRRQVAL ... FIHGA*LR*QFNCDKLPH*SLSMISCQT*E
 >J01749.1-2-
 NS*RRKGLVIRLFL*VNVMIIMVS*TSGGT ... FHTRCLTALAI*L**TTALKLIDDKLSNMR
 >J01749.1-3-
 EFLKTKGPRDTPIFIG*CHDNNGFLDVRWH ... ISYTVPDCVSNLTVINYRIKAYR**AVKHE

Pattern Searching
The pBR322 cloning vector is a circular plasmid with unique restriction sites in two antibiotic resistance genes.

The transmute -replace function introduces a second BamHI restriction enzyme recognition site by modifying
the ribosomal binding site of the pBR322 rop (restrictor of plasmid copy number) gene:

 efetch -db nuccore -id J01749 -format fasta |
 transmute -replace -offset 1907 -delete GG -insert TC |

The transmute -search function takes a list of sequence patterns with optional labels (such as restriction enzyme
names), and uses a finite-state algorithm to simultaneously search for all patterns:

 transmute -search -circular GGATCC:BamHI GAATTC:EcoRI CTGCAG:PstI |
 align-columns -g 4 -a rl

The (0-based) starting positions and labels for each match are then printed in a two-column table:

 374 BamHI
 1904 BamHI
 3606 PstI
 4358 EcoRI

The disambiguate-nucleotides and systematic-mutations scripts can generate all possible single-base
substitutions in a pattern for a more relaxed search.

Protein

Amino Acid Composition
What is the amino acid composition of human titin?

 #!/bin/bash -norc

 AAComp() {

 abbrev=(Ala Asx Cys Asp Glu Phe Gly His Ile \
 Xle Lys Leu Met Asn Pyl Pro Gln Arg \
 Ser Thr Sec Val Trp Xxx Tyr Glx)

 tr A-Z a-z |
 sed 's/[^a-z]//g' |
 fold -w 1 |
 sort-uniq-count |
 while read num lttr
 do
 idx=$(printf %i "'$lttr'")
 ofs=$((idx-97))
 echo -e "${abbrev[$ofs]}\t$num"
 done |

Entrez Direct Examples 179

 sort
 }

 efetch -db protein -id Q8WZ42 -format gpc |
 xtract -pattern INSDSeq -element INSDSeq_sequence |
 AAComp

This produces a table of residue counts using the three-letter amino acid abbreviations:

 Ala 2084
 Arg 1640
 Asn 1111
 Asp 1720
 Cys 513
 Gln 942
 Glu 3193
 Gly 2066
 His 478
 Ile 2062
 Leu 2117
 Lys 2943
 Met 398
 Phe 908
 Pro 2517
 Ser 2463
 Thr 2546
 Trp 466
 Tyr 999
 Val 3184

Longest Sequences
What are the longest known insulin precursor molecules?

 esearch -db protein -query "insulin [PROT]" |
 efetch -format docsum |
 xtract -pattern DocumentSummary -element Caption Slen Title |
 grep -v receptor | sort -k 2,2nr | head -n 5 | cut -f 1 |
 xargs -n 1 sh -c 'efetch -db protein -id "$0" -format gp > "$0".gpf'

Post-processing excludes the longer "insulin-like receptor" sequences, sorts by sequence length, and saves the
GenPept results to individual files named by their sequence accessions, using the right angle bracket (">") Unix
output redirection character:

 EFN61235.gpf
 EFN80340.gpf
 EGW08477.gpf
 EKC18433.gpf
 ELK28555.gpf

Archaea Enzyme
Which archaebacteria have chloramphenicol acetyltransferase?

 esearch -db protein -organism archaea \
 -query "chloramphenicol acetyltransferase [PROT]" |
 efetch -format gpc |
 xtract -pattern INSDSeq -element INSDSeq_organism INSDSeq_definition |

180 Entrez Programming Utilities Help

 grep -i chloramphenicol | grep -v MULTISPECIES |
 cut -f 1 | sort -f | uniq -i

Filtering on the definition line produces a list of archaeal organism names:

 Euryarchaeota archaeon
 Methanobrevibacter arboriphilus
 Methanobrevibacter gottschalkii
 Methanobrevibacter millerae
 Methanobrevibacter oralis
 ...

Gene

Gene Counts
How many genes are on each human chromosome?

 for chr in {1..22} X Y MT
 do
 esearch -db gene -query "Homo sapiens [ORGN] AND $chr [CHR]" |
 efilter -status alive -type coding |
 efetch -format docsum |
 xtract -pattern DocumentSummary -NAME Name \
 -block GenomicInfoType -if ChrLoc -equals "$chr" \
 -tab "\n" -element ChrLoc,"&NAME" |
 sort | uniq | cut -f 1 |
 sort-uniq-count-rank |
 reorder-columns 2 1
 done

This returns a count of unique protein-coding genes per chromosome:

 1 2011
 2 1224
 3 1046
 4 742
 5 854
 6 1015
 7 911
 8 666
 9 763
 10 718
 11 1279
 12 1012
 13 327
 14 601
 15 585
 16 835
 17 1147
 18 266
 19 1391
 20 528
 21 232
 22 429
 X 839
 Y 63
 MT 13

Entrez Direct Examples 181

The range construct cannot be used for Roman numerals, so the equivalent query on Saccharomyces cerevisiae
would need to explicitly list all chromosomes, including the mitochondrion:

 for chr in I II III IV V VI VII VIII IX X XI XII XIII XIV XV XVI MT

Plastid genes can be selected with "source plastid [PROP]" or ‑location plastid.

Chromosome Locations
Where are mammalian calmodulin genes located?

 esearch -db gene -query "calmodulin * [PFN] AND mammalia [ORGN]" |
 efetch -format docsum |
 xtract -pattern DocumentSummary \
 -def "-" -element Id Name MapLocation ScientificName

The ‑def command adds a dash to prevent missing data from shifting columns in the table:

 801 CALM1 14q32.11 Homo sapiens
 808 CALM3 19q13.32 Homo sapiens
 805 CALM2 2p21 Homo sapiens
 24242 Calm1 6q32 Rattus norvegicus
 12313 Calm1 12 E Mus musculus
 50663 Calm2 6q12 Rattus norvegicus
 24244 Calm3 1q21 Rattus norvegicus
 12315 Calm3 7 9.15 cM Mus musculus
 12314 Calm2 17 E4 Mus musculus
 80796 Calm4 13 A1 Mus musculus
 617095 CALM1 - Bos taurus
 396838 CALM3 - Sus scrofa
 520277 CALM3 - Bos taurus
 364774 Calml5 17q12.2 Rattus norvegicus
 ...

Exon Counts
How many exons are in each dystrophin transcript variant?

 esearch -db gene -query "DMD [GENE] AND human [ORGN]" |
 efetch -format docsum |
 xtract -pattern DocumentSummary -block GenomicInfoType \
 -tab "\n" -element ChrAccVer,ChrStart,ChrStop |
 xargs -n 3 sh -c 'efetch -db nuccore -format gbc \
 -id "$0" -chr_start "$1" -chr_stop "$2"' |

This retrieves an INSDSeq XML subset record for the indicated gene region, which contains a number of
alternatively-spliced dystrophin mRNA and CDS features.

Data extraction computes the number of intervals for each mRNA location (individual exons plus non-adjacent
UTRs), and obtains the transcript sequence accession, transcript length, and product name from qualifiers:

 xtract -insd complete mRNA "#INSDInterval" \
 transcript_id "%transcription" product |

Final filtering and sorting:

 grep -i dystrophin |
 sed 's/dystrophin, transcript variant //g' |
 sort -k 2,2nr -k 4,4nr

182 Entrez Programming Utilities Help

results in a table of exon counts and transcript lengths:

 NC_000023.11 79 NM_004010.3 14083 Dp427p2
 NC_000023.11 79 NM_004009.3 14000 Dp427p1
 NC_000023.11 79 NM_004006.3 13992 Dp427m
 NC_000023.11 79 NM_000109.4 13854 Dp427c
 NC_000023.11 78 XM_006724468.2 13923 X1
 NC_000023.11 78 XM_017029328.1 13916 X4
 NC_000023.11 78 XM_006724469.3 13897 X2
 NC_000023.11 77 XM_006724470.3 13875 X3
 ...

Upstream Sequences
What sequences are upstream of phenylalanine hydroxylase genes?

 esearch -db nuccore -query "U49897 [ACCN]" |
 elink -target gene |
 elink -target homologene |
 elink -target gene |
 efetch -format docsum |
 xtract -pattern DocumentSummary -if GenomicInfoType -element Id \
 -block GenomicInfoType -element ChrAccVer -1-based ChrStart ChrStop |

This produces a table with 1-based sequence coordinates:

 5053 NC_000012.12 102958441 102836889
 18478 NC_000076.7 87357657 87419999
 38871 NT_037436.4 7760453 7763166
 24616 NC_005106.4 28066639 28129772
 378962 NC_007115.7 17409367 17391680
 ...

Then, given a shell script named "upstream.sh":

 #!/bin/bash -norc

 bases=1500
 if [-n "$1"]
 then
 bases="$1"
 fi

 while read id accn start stop
 do
 if [$start -eq 0] || [$stop -eq 0] || [$start -eq $stop]
 then
 echo "Skipping $id due to ambiguous coordinates"
 continue
 fi
 if [$start -gt $stop]
 then
 stop=$((start + bases))
 start=$((start + 1))
 strand=2
 else
 stop=$((start - 1))
 start=$((start - bases))
 strand=1
 fi

Entrez Direct Examples 183

 rslt=$(efetch -db nuccore -id $accn -format fasta \
 -seq_start $start -seq_stop $stop -strand $strand < /dev/null)
 echo "$rslt"
 done

the data lines can be piped through:

 upstream.sh 500

to extract and print the 500 nucleotides immediately upstream of each gene:

 >NC_000012.12:c102958941-102958442 Homo sapiens chromosome 12, GRCh38.p13 ...
 TGAAGTCGAGAAGCTCCTGCTCCTCGGGGCTGAGCGGGTCGTAAGAGCCCTCGTCCGACGAGTAGGATGA
 GACCGGCGAGCCGGCCATGGAGTTCAAGTCGTTGGAGTAGTTGGGGGAGATGGTGGGCGACAGGACGCCT
 GCCTGGAAGGCGGCGCTCACCGCGTCATGCTCGTCCAGCAGCTGCTGCAGCGCGCGGATGTACTCGACCG
 ...

Assembly

Complete Genomes
What complete genomes are available for Escherichia coli?

 esearch -db assembly -query \
 "Escherichia coli [ORGN] AND representative [PROP]" |
 elink -target nuccore -name assembly_nuccore_refseq |
 efetch -format docsum |
 xtract -pattern DocumentSummary -element AccessionVersion Slen Title |
 sed 's/,.*//' |
 sort-table -k 2,2nr

This search finds genomic assemblies and sorts the results by sequence length, allowing complete genomes to be
easily distinguished from smaller plasmids:

 NC_002695.2 5498578 Escherichia coli O157:H7 str. Sakai DNA
 NC_000913.3 4641652 Escherichia coli str. K-12 substr. MG1655
 NC_002128.1 92721 Escherichia coli O157:H7 str. Sakai plasmid pO157
 NC_002127.1 3306 Escherichia coli O157:H7 str. Sakai plasmid pOSAK1

The sed command removes text (e.g., complete genome, complete sequence, primary assembly) after a comma.

A similar query for humans, additionally filtering out scaffolds, contigs, and plasmids:

 esearch -db assembly -query "Homo sapiens [ORGN] AND representative [PROP]" |
 elink -target nuccore -name assembly_nuccore_refseq |
 efetch -format docsum |
 xtract -pattern DocumentSummary -element AccessionVersion Slen Title |
 sed 's/,.*//' |
 grep -v scaffold | grep -v contig | grep -v plasmid | grep -v patch |
 sort

returns the assembled chromosome and mitochondrial sequence records:

 NC_000001.11 248956422 Homo sapiens chromosome 1
 NC_000002.12 242193529 Homo sapiens chromosome 2
 NC_000003.12 198295559 Homo sapiens chromosome 3
 NC_000004.12 190214555 Homo sapiens chromosome 4
 NC_000005.10 181538259 Homo sapiens chromosome 5
 NC_000006.12 170805979 Homo sapiens chromosome 6
 NC_000007.14 159345973 Homo sapiens chromosome 7

184 Entrez Programming Utilities Help

 NC_000008.11 145138636 Homo sapiens chromosome 8
 NC_000009.12 138394717 Homo sapiens chromosome 9
 NC_000010.11 133797422 Homo sapiens chromosome 10
 NC_000011.10 135086622 Homo sapiens chromosome 11
 NC_000012.12 133275309 Homo sapiens chromosome 12
 NC_000013.11 114364328 Homo sapiens chromosome 13
 NC_000014.9 107043718 Homo sapiens chromosome 14
 NC_000015.10 101991189 Homo sapiens chromosome 15
 NC_000016.10 90338345 Homo sapiens chromosome 16
 NC_000017.11 83257441 Homo sapiens chromosome 17
 NC_000018.10 80373285 Homo sapiens chromosome 18
 NC_000019.10 58617616 Homo sapiens chromosome 19
 NC_000020.11 64444167 Homo sapiens chromosome 20
 NC_000021.9 46709983 Homo sapiens chromosome 21
 NC_000022.11 50818468 Homo sapiens chromosome 22
 NC_000023.11 156040895 Homo sapiens chromosome X
 NC_000024.10 57227415 Homo sapiens chromosome Y
 NC_012920.1 16569 Homo sapiens mitochondrion

This process can be automated to loop through a list of specified organisms:

 for org in \
 "Agrobacterium tumefaciens" \
 "Bacillus anthracis" \
 "Escherichia coli" \
 "Neisseria gonorrhoeae" \
 "Pseudomonas aeruginosa" \
 "Shigella flexneri" \
 "Streptococcus pneumoniae"
 do
 esearch -db assembly -query "$org [ORGN]" |
 efilter -query "representative [PROP]" |
 elink -target nuccore -name assembly_nuccore_refseq |
 efetch -format docsum |
 xtract -pattern DocumentSummary -element AccessionVersion Slen Title |
 sed 's/,.*//' |
 grep -v -i -e scaffold -e contig -e plasmid -e sequence -e patch |
 sort-table -k 2,2nr
 done

which generates:

 NC_011985.1 4005130 Agrobacterium radiobacter K84 chromosome 1
 NC_011983.1 2650913 Agrobacterium radiobacter K84 chromosome 2
 NC_005945.1 5228663 Bacillus anthracis str. Sterne chromosome
 NC_003997.3 5227293 Bacillus anthracis str. Ames chromosome
 NC_002695.1 5498450 Escherichia coli O157:H7 str. Sakai chromosome
 NC_018658.1 5273097 Escherichia coli O104:H4 str. 2011C-3493 ...
 NC_011751.1 5202090 Escherichia coli UMN026 chromosome
 NC_011750.1 5132068 Escherichia coli IAI39 chromosome
 NC_017634.1 4747819 Escherichia coli O83:H1 str. NRG 857C chromosome
 NC_000913.3 4641652 Escherichia coli str. K-12 substr. MG1655
 NC_002946.2 2153922 Neisseria gonorrhoeae FA 1090 chromosome
 NC_002516.2 6264404 Pseudomonas aeruginosa PAO1 chromosome
 NC_004337.2 4607202 Shigella flexneri 2a str. 301 chromosome
 NC_003028.3 2160842 Streptococcus pneumoniae TIGR4 chromosome
 NC_003098.1 2038615 Streptococcus pneumoniae R6 chromosome

Entrez Direct Examples 185

SNP

SNP Data Table
How can you obtain a tab-delimited table of SNP attributes from a document summary?

 efetch -db snp -id 11549407 -format docsum |
 snp2tbl

The snp2tbl script extracts fields from HGVS data and prints the individual values for further processing:

 rs11549407 NC_000011.10 5226773 G A Genomic Substitution HBB
 rs11549407 NC_000011.10 5226773 G C Genomic Substitution HBB
 rs11549407 NC_000011.10 5226773 G T Genomic Substitution HBB
 rs11549407 NG_000007.3 70841 C A Genomic Substitution HBB
 rs11549407 NG_000007.3 70841 C G Genomic Substitution HBB
 rs11549407 NG_000007.3 70841 C T Genomic Substitution HBB
 ...
 rs11549407 NM_000518.5 167 C A Coding Substitution HBB
 rs11549407 NM_000518.5 167 C G Coding Substitution HBB
 rs11549407 NM_000518.5 167 C T Coding Substitution HBB
 rs11549407 NP_000509.1 39 Q * Protein Termination HBB
 rs11549407 NP_000509.1 39 Q E Protein Missense HBB
 rs11549407 NP_000509.1 39 Q K Protein Missense HBB

Columns are SNP identifier, accession.version, offset from start of sequence, letters to delete, letters to insert,
sequence class, variant type, and gene name. The internal steps (snp2hgvs, hgvs2spdi, and spdi2tbl) are
described below.

Amino Acid Substitutions
What are the missense products of green-sensitive opsin?

 esearch -db gene -query "OPN1MW [PREF] AND human [ORGN]" |
 elink -target snp | efilter -class missense |
 efetch -format docsum |

SNP document summaries contain HGVS data of the form:

 NC_000023.11:g.154193517C>A, ... ,NP_000504.1:p.Ala285Val

This can be parsed by an xtract ‑hgvs command within the snp2hgvs script:

 snp2hgvs |

into a structured representation of nucleotide and amino acid replacements:

 ...
 <HGVS>
 <Id>782327292</Id>
 <Gene>OPN1MW</Gene>
 <Variant>
 <Class>Genomic</Class>
 <Type>Substitution</Type>
 <Accession>NC_000023.11</Accession>
 <Position>154193516</Position>
 <Deleted>C</Deleted>
 <Inserted>A</Inserted>
 <Hgvs>NC_000023.11:g.154193517C>A</Hgvs>
 </Variant>

186 Entrez Programming Utilities Help

 ...
 <Variant>
 <Class>Coding</Class>
 <Type>Substitution</Type>
 <Accession>NM_000513.2</Accession>
 <Offset>853</Offset>
 <Deleted>C</Deleted>
 <Inserted>T</Inserted>
 <Hgvs>NM_000513.2:c.854C>T</Hgvs>
 </Variant>
 <Variant>
 <Class>Protein</Class>
 <Type>Missense</Type>
 <Accession>NP_000504.1</Accession>
 <Position>284</Position>
 <Deleted>A</Deleted>
 <Inserted>D</Inserted>
 <Hgvs>NP_000504.1:p.Ala285Asp</Hgvs>
 </Variant>
 <Variant>
 <Class>Protein</Class>
 <Type>Missense</Type>
 <Accession>NP_000504.1</Accession>
 <Position>284</Position>
 <Deleted>A</Deleted>
 <Inserted>V</Inserted>
 <Hgvs>NP_000504.1:p.Ala285Val</Hgvs>
 </Variant>
 </HGVS>
 ...

where the original 1-based HGVS positions are converted to 0-based in the XML.

Passing those results through the hgvs2spdi script:

 hgvs2spdi |

converts CDS-relative offsets to sequence-relative positions:

 ...
 <SPDI>
 <Id>782327292</Id>
 <Gene>OPN1MW</Gene>
 ...
 <Variant>
 <Class>Coding</Class>
 <Type>Substitution</Type>
 <Accession>NM_000513.2</Accession>
 <Position>935</Position>
 <Offset>853</Offset>
 <Deleted>C</Deleted>
 <Inserted>A</Inserted>
 <Hgvs>NM_000513.2:c.854C>A</Hgvs>
 <Spdi>NM_000513.2:935:C:A</Spdi>
 </Variant>
 <Variant>
 <Class>Coding</Class>
 <Type>Substitution</Type>
 <Accession>NM_000513.2</Accession>
 <Position>935</Position>

Entrez Direct Examples 187

 <Offset>853</Offset>
 <Deleted>C</Deleted>
 <Inserted>T</Inserted>
 <Hgvs>NM_000513.2:c.854C>T</Hgvs>
 <Spdi>NM_000513.2:935:C:T</Spdi>
 </Variant>
 ...
 </SPDI>
 ...

Piping this through the spdi2tbl script:

 spdi2tbl |

completes the final step of the snp2tbl process to generate a SNP Data Table. Filtering that through:

 grep Protein | grep Missense | cut -f 1-5

results in a table of amino acid substitutions sorted by accession, position, and residue:

 rs1238141906 NP_000504.1 40 E K
 rs1189783086 NP_000504.1 42 P L
 rs1257135801 NP_000504.1 45 H Y
 rs1284438666 NP_000504.1 63 V I
 rs1223726997 NP_000504.1 64 I T
 ...

Those rows are processed in a while loop that caches the current sequence data:

 while read rsid accn ofs del ins
 do
 if ["$accn" != "$last"]
 then
 seq=$(efetch -db protein -id "$accn" -format gpc < /dev/null |
 xtract -pattern INSDSeq -lower INSDSeq_sequence)
 last="$accn"
 fi
 pos=$((ofs + 1))
 echo ">$rsid [$accn $ins@$pos]"
 echo "$seq" |
 transmute -replace -offset "$ofs" -delete "$del" -insert "$ins" -lower |
 fold -w 50
 done

and uses transmute ‑replace to generate modified FASTA with substituted residues in upper case:

 >rs1238141906 [NP_000504.1 K@41]
 maqqwslqrlagrhpqdsyedstqssiftytnsnstrgpfKgpnyhiapr
 wvyhltsvwmifvviasvftnglvlaatmkfkklrhplnwilvnlavadl
 aetviastisvvnqvygyfvlghpmcvlegytvslcgitglwslaiiswe
 ...

SNP-Modified Product Pairs
How can you match codon modifications with amino acid substitutions?

 efetch -db snp -id 11549407 -format docsum |
 snp2tbl |
 tbl2prod

188 Entrez Programming Utilities Help

For SNPs that have different substitutions at the same position, the tbl2prod script translates coding sequences
(after nucleotide modification), and sorts them with protein sequences (after residue replacement), to produce
adjacent matching CDS/protein pairs:

 rs11549407 NM_000518.5:167:C:T MVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWT*R...
 rs11549407 NP_000509.1:39:Q:* MVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWT*R...
 rs11549407 NM_000518.5:167:C:G MVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTER...
 rs11549407 NP_000509.1:39:Q:E MVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTER...
 rs11549407 NM_000518.5:167:C:A MVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTKR...
 rs11549407 NP_000509.1:39:Q:K MVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTKR...
 rs11549407 NM_000518.5:167:C:+ MVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQR...
 rs11549407 NP_000509.1:39:Q:+ MVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQR...

The "+" sign indicates the unmodified "wild-type" nucleotide or amino acid.

Structure

Structural Similarity
What archaea structures are similar to snake venom phospholipase?

 esearch -db structure -query "crotalus [ORGN] AND phospholipase A2" |
 elink -related |
 efilter -query "archaea [ORGN]" |
 efetch -format docsum |
 xtract -pattern DocumentSummary \
 -if PdbClass -equals Hydrolase \
 -element PdbDescr |
 sort -f | uniq -i

Structure neighbors use geometric comparison to find proteins that are too divergent to be detected by sequence
similarity with a BLAST search:

 Crystal Structure Of Autoprocessed Form Of Tk-Subtilisin
 Crystal Structure Of Ca2 Site Mutant Of Pro-S324a
 Crystal Structure Of Ca3 Site Mutant Of Pro-S324a
 ...

Taxonomy

Taxonomic Lineage
What are the major taxonomic lineage nodes for humans?

 efetch -db taxonomy -id 9606 -format xml |
 xtract -pattern Taxon -first TaxId -tab "\n" -element ScientificName \
 -block "**/Taxon" \
 -if Rank -is-not "no rank" -and Rank -is-not clade \
 -tab "\n" -element Rank,ScientificName

This uses the double star / child construct to recursively explore the data hierarchy:

 9606 Homo sapiens
 superkingdom Eukaryota
 kingdom Metazoa
 phylum Chordata
 subphylum Craniata
 superclass Sarcopterygii

Entrez Direct Examples 189

 class Mammalia
 superorder Euarchontoglires
 order Primates
 ...

Taxonomy Search
Which organisms contain an annotated RefSeq genome MatK gene?

 esearch -db nuccore -query "MatK [GENE] AND NC_0:NC_999999999 [PACC]" |
 efetch -format docsum |
 xtract -pattern DocumentSummary -element TaxId |
 sort -n | uniq |
 epost -db taxonomy |
 efetch -format docsum |
 xtract -pattern DocumentSummary -element ScientificName |
 sort

The first query obtains taxonomy UIDs from nucleotide document summaries and uploads them for separate
retrieval from the taxonomy database:

 Acidosasa purpurea
 Acorus americanus
 ...
 Zingiber spectabile
 Zygnema circumcarinatum

BioSample
BioSample document summaries:

 esummary -db biosample -id SAMN34375013 |

use XML attributes to identify data element types:

 <Attribute attribute_name="strain" harmonized_name="strain" ...>KF24</Attribute>

A two-stage xtract pipeline can produce a tab-delimited table, with one column for each selected field. Piping the
data to the first command:

 xtract -rec BioSampleInfo -pattern DocumentSummary \
 -wrp Accession -element Accession \
 -wrp Title -element DocumentSummary/Title \
 -wrp Link -sep "|" -numeric Links/Link \
 -group Attribute -if @harmonized_name \
 -TAG -lower @harmonized_name -wrp "&TAG" -element Attribute |

generates an intermediate form, with XML object names taken from the "harmonized_name" attributes:

 <BioSampleInfo>
 <Accession>SAMN34375013</Accession>
 <Title>Microbe sample from Bacillus subtilis</Title>
 <Link>960711</Link>
 <isolation_source>rhizosphere soil</isolation_source>
 <collection_date>missing</collection_date>
 <geo_loc_name>China: Kaifeng, Henan Province</geo_loc_name>
 <sample_type>bacterial isolate</sample_type>
 <lat_lon>34.14 N 114.05 E</lat_lon>
 <strain>KF24</strain>
 </BioSampleInfo>

190 Entrez Programming Utilities Help

(A bsmp2info script containing this first xtract command is now included with EDirect.)

Desired fields can then be selected by name in the last line of the second xtract command, with a "-" placeholder
printed for any missing values:

 xtract -pattern BioSampleInfo -def "-" -first Accession Title Link \
 geo_loc_name isolation_source strain lat_lon

Using ‑first instead of ‑element eliminates possible redundant entries during the attribute name transition from
"country" to "geo_loc_name".

SRA

Using RunInfo Format
SRA data can be retrieved in RunInfo format:

 efetch -db sra -id SRR6314034 -format runinfo |

as comma-separated values, with the first line containing the field names:

 Run,ReleaseDate,LoadDate,spots,bases,spots_with_mates,avgLength,...
 SRR6314034,2017-11-21 23:27:11,2017-11-21 23:25:38,128,539118,0,...

Piping to the csv2xml script, and using the ‑header flag:

 csv2xml -set Set -rec Rec -header |

converts the data into XML:

 <Set>
 <Rec>
 <Run>SRR6314034</Run>
 <ReleaseDate>2017-11-21 23:27:11</ReleaseDate>
 <LoadDate>2017-11-21 23:25:38</LoadDate>
 <spots>128</spots>
 <bases>539118</bases>
 <spots_with_mates>0</spots_with_mates>
 <avgLength>4211</avgLength>
 <size_MB>0</size_MB>
 <AssemblyName></AssemblyName>
 <download_path>...</download_path>
 <Experiment>SRX3413965</Experiment>
 <LibraryName>child</LibraryName>
 <LibraryStrategy>AMPLICON</LibraryStrategy>
 <LibrarySelection>PCR</LibrarySelection>
 <LibrarySource>GENOMIC</LibrarySource>
 <LibraryLayout>SINGLE</LibraryLayout>
 <InsertSize>0</InsertSize>
 <InsertDev>0</InsertDev>
 <Platform>PACBIO_SMRT</Platform>
 <Model>PacBio RS II</Model>
 <SRAStudy>SRP125431</SRAStudy>
 <BioProject>PRJNA418990</BioProject>
 <Study_Pubmed_id></Study_Pubmed_id>
 <ProjectID>418990</ProjectID>
 <Sample>SRS2707133</Sample>
 <BioSample>SAMN08040264</BioSample>
 <SampleType>simple</SampleType>
 <TaxID>9606</TaxID>

Entrez Direct Examples 191

 <ScientificName>Homo sapiens</ScientificName>
 <SampleName>BBS9_del_mother</SampleName>
 <g1k_pop_code></g1k_pop_code>
 <source></source>
 <g1k_analysis_group></g1k_analysis_group>
 <Subject_ID></Subject_ID>
 <Sex>female</Sex>
 <Disease></Disease>
 <Tumor>no</Tumor>
 <Affection_Status></Affection_Status>
 <Analyte_Type></Analyte_Type>
 <Histological_Type></Histological_Type>
 <Body_Site></Body_Site>
 <CenterName>ICAHN SCHOOL OF MEDICINE AT MOUNT SINAI</CenterName>
 <Submission>SRA633054</Submission>
 <dbgap_study_accession></dbgap_study_accession>
 <Consent>public</Consent>
 <RunHash>19AC4EB8A65D733274756464DCCF65EA</RunHash>
 <ReadHash>AC8F39C51F95D9CD1BD0CBFBB669AD1E</ReadHash>
 </Rec>
 </Set>

This can then be piped through xtract:

 xtract -pattern Rec -def "-" -element Run Experiment BioProject BioSample

to retrieve the desired values by field name:

 SRR6314034 SRX3413965 PRJNA418990 SAMN08040264

Installation of EDirect on Cloud
To install the EDirect software, open a terminal window and execute the following command:

 sh -c "$(curl -fsSL https://ftp.ncbi.nlm.nih.gov/entrez/entrezdirect/install-edirect.sh)"

At the end of installation, answer "y" to have the script run the PATH update command to edit your
configuration file, so that EDirect programs can be run in subsequent terminal sessions.

One installation is complete, run:

 export PATH=${PATH}:${HOME}/edirect

to set the PATH for the current terminal session.

Downloading BLAST Software
Obtain the Magic-BLAST software if it is not already installed:

 download-ncbi-software magic-blast

Preparing Chromosome Files
Retrieve the sequence of human chromosome 7 with:

 efetch -db nuccore -id NC_000007 -format fasta -immediate > NC_000007.fsa

Download protein-coding genes on human chromosome 7 in document summary format, and extract the gene
ranges into a tab-delimited table:

192 Entrez Programming Utilities Help

 esearch -db gene -query "Homo sapiens [ORGN] AND 7 [CHR]" |
 efilter -status alive -type coding | efetch -format docsum |
 gene2range "7" > NC_000007.gen

SRA Gene Analysis
Run a magicblast search of SRR6314034 against chromosome 7:

 magicblast -sra SRR6314034 -subject NC_000007.fsa -outfmt asn |
 asn2xml > SRR6314034.xml

Passing the alignment details through the blst2tkns script:

 cat SRR6314034.xml |
 blst2tkns |

tokenizes the alignment parts:

 index 1
 score 6268
 start 33088037
 stop 33167397
 strand plus
 match 12
 mismatch 1
 genomic-ins 1
 ...

Piping these to the split-at-intron script:

 split-at-intron |

detects large genomic insertions:

 6268 1 plus 33088037..33091003,33163798..33167397
 4910 2 plus 33089462..33091003,33163799..33167397
 1814 3 plus 33164965..33167397
 ...

These are filtered by minimum score with:

 filter-columns '$1 > 1000' |

The fuse-ranges script then merges overlapping alignments:

 fuse-ranges |

into a minimal set of extended ranges:

 plus 33088037 33091003 2967
 plus 33163798 33167398 3601
 plus 33272248 33272278 31
 plus 33394238 33394551 314
 minus 33088037 33091004 2968
 minus 33163798 33167398 3601
 minus 33255886 33256012 127
 minus 33394326 33394551 226

Running each range through the find-in-gene script:

 while read std min max len
 do

Entrez Direct Examples 193

 cat NC_000007.gen |
 find-in-gene "$std" "$min" "$max"
 done |
 sort -f | uniq -i

returns the names of gene(s) that overlap the aligned segments:

 BBS9

PubChem

PubChem in Entrez
Entrez can search on the complete synonym of a compound:

 esearch -db pccompound -query "catechol [CSYN]" |
 efetch -format uid

to return a small number of closely matching compound identifiers (CIDs):

 73160
 9064
 289

Entrez document summaries for a compound:

 efetch -db pccompound -id 289 -format docsum |
 xtract -pattern DocumentSummary -element MolecularFormula IsomericSmiles

contains general descriptive information fields for the compound:

 C6H6O2 C1=CC=C(C(=C1)O)O

Power User Gateway (PUG) REST Query Form
PubChem also supports a RESTful service for more advanced queries. Nquire provides a ‑pugrest URL shortcut.
The base form of a search request is is:

 nquire -pugrest [compound|substance|assay] [input] [operation] [output]

Searches can use the name of a compound:

 nquire -pugrest compound name catechol cids TXT

to obtain the best matching compound identifier:

 289

The CID can be used as the input key to obtain a title and description:

 nquire -pugrest compound cid 289 description XML

or to retrieve a much more detailed record:

 nquire -pugrest compound cid 289 record XML |

that includes the canonical or isomeric SMILES codes:

 xtract -pattern PC-InfoData \
 -if PC-Urn_label -equals SMILES -and PC-Urn_name -equals Isomeric \
 -element PC-InfoData_value_sval

194 Entrez Programming Utilities Help

PubChem Chemical Identifiers
Certain identifier types require POST arguments to encode special symbols:

 nquire -pugrest compound smiles description XML \
 -smiles "C1=CC=C(C(=C1)O)O" |
 xtract -pattern InformationList -element Title Description

This returns the chemical name and description:

 Catechol Catechol is a benzenediol comprising...

Other identifier key types that are encoded in separate arguments are shown below:

 nquire -pugrest compound inchi synonyms TXT \
 -inchi "1S/C6H6O2/c7-5-3-1-2-4-6(5)8/h1-4,7-8H"

 nquire -pugrest compound inchikey cids JSON \
 -inchikey "YCIMNLLNPGFGHC-UHFFFAOYSA-N"

 nquire -pugrest compound/fastsubstructure/smarts/cids/XML \
 -smarts "[#7]-[#6]-1=[#6]-[#6](C#C)=[#6](-[#6]-[#8])-[#6]=[#6]-1"

(Nquire ‑inchi will supply the expected "InChI=" prefix if it is missing in the argument string.)

PUG-REST Asynchronous Queries
Some PUG-REST queries are computationally intensive and run asynchronously:

 nquire -pugrest compound/superstructure/cid/2244/XML |

The returned <ListKey> token is piped to an nquire ‑pugwait command, which polls the server until the results
are available:

 nquire -pugwait

Identifiers are then downloaded and placed directly in an ENTREZ_DIRECT message:

 <ENTREZ_DIRECT>
 <Db>pccompound</Db>
 <Count>3750</Count>
 <Id>87</Id>
 <Id>175</Id>
 <Id>176</Id>
 ...
 <Id>162400221</Id>
 <Id>162416056</Id>
 <Id>162417911</Id>
 </ENTREZ_DIRECT>

Support for this form was added when EDirect was redesigned in 2020.

Bibliometrics

Reverse Chronological Order
Repackaging an entire document summary and creating a set of keys for sorting:

 esearch -db pubmed -query "tn3 transposition immunity" |
 efetch -format docsum |

Entrez Direct Examples 195

 xtract -rec Rec -pattern DocumentSummary -INDX "+" \
 -group DocumentSummary -pkg SortKeys \
 -unit DocumentSummary -wrp INDX -element "&INDX" \
 -unit PubDate -wrp YEAR -year PubDate \
 -unit PubDate -wrp DATE -date "*" \
 -unit Title -wrp TITL -lower Title \
 -unit Author -position first -wrp FAUT -lower Name \
 -unit Author -position last -wrp LAUT -lower Name \
 -unit Authors -wrp ANUM -num Author/Name \
 -unit DocumentSummary -wrp SIZE -len "*" \
 -group DocumentSummary -pkg DS -element "*" |

produces an intermediate structure with separate containers for the sort keys and the original docsum:

 ...
 <Rec>
 <SortKeys>
 <INDX>5</INDX>
 <YEAR>1989</YEAR>
 <DATE>1989/04</DATE>
 <TITL>nucleotide sequences required for tn3 transposition immunity.</TITL>
 <FAUT>kans ja</FAUT>
 <LAUT>casadaban mj</LAUT>
 <ANUM>2</ANUM>
 <SIZE>1695</SIZE>
 </SortKeys>
 <DS>
 <DocumentSummary>
 <Id>2539356</Id>
 <PubDate>1989 Apr</PubDate>
 <Source>J Bacteriol</Source>
 ...
 </DocumentSummary>
 </DS>
 </Rec>
 ...

This allows sorting of records by a new tag derived from ‑year:

 xtract -rec Rec -pattern Rec -sort-rev SortKeys/YEAR |
 xtract -set DocumentSummarySet -pattern Rec \
 -group DS/DocumentSummary -element "*" |
 transmute -format -combine |
 xtract -pattern DocumentSummary -element Id PubDate

to present publication records with the most recent shown first:

 36257990 2022 Oct 18
 28096365 2017 Jan 31
 22624153 2012 Feb
 21729108 2011 Sep
 8595595 1996 Jan

Count Unique Journals
Some bibliometric analyses require fetching huge numbers of PubMed records. One such example is counting
the number of unique journals publishing papers indexed under a given category.

A common function consolidates code to execute a query and fetch the records from the EDirect local PubMed
archive. The xtract ‑histogram shortcut acts as an ‑element command followed by a built-in sort-uniq-count.

196 Entrez Programming Utilities Help

(This can save significant time when the number of results is in the millions.) The line count gives the number of
journals publishing at least one paper that satisfies the query:

 CountUniqueJournals() {

 qry="$1"

 # count number of unique journals publishing papers that match a query
 phrase-search -db pubmed -query "$qry" | fetch-pubmed |
 xtract -pattern PubmedArticle -histogram Journal/ISOAbbreviation |
 wc -l | tr -d ' '
 }

Looping through a series of years, and calling this function with and without a filter of interest in the query:

 for year in {2016..2022}
 do

 # want to find percent of journals still using unstructured date
 filt="medline date [PROP]"
 base="journal article [PTYP] AND $year [YEAR]"

 # subset of journals publishing a paper with filter condition
 subs=$(CountUniqueJournals "$base AND $filt")

 # number of unique journals in selected publication types
 totl=$(CountUniqueJournals "$base")

 frac="-"
 if ["$totl" -gt 0]
 then
 # calculate (integer) percentage
 frac=$((subs * 100 / totl))
 fi

 # print year, journal counts, and percent using filter condition
 printf "$year\t$subs\t$totl\t$frac\n"

 done | align-columns -h 2 -g 4 -a r

returns the year, the numbers of unique journals with the filter and in total for that year, and the ratio of the two
as a percentage. In this example the last column shows a steady decrease in the percentage of journals providing
an unstructured publication date:

 2016 1933 10362 18
 2017 1153 10473 11
 2018 1071 10321 10
 2019 980 10027 9
 2020 919 10579 8
 2021 950 10947 8
 2022 835 10600 7

Entrez Direct Examples 197

	E-utilities Quick Start
	Release Notes
	Announcement
	Introduction
	Searching a Database
	Uploading UIDs to Entrez
	Downloading Document Summaries
	Downloading Full Records
	Finding Related Data Through Entrez Links
	Getting Database Statistics and Search Fields
	Performing a Global Entrez Search
	Retrieving Spelling Suggestions
	Demonstration Programs
	For More Information

	A General Introduction to the E-utilities
	Introduction
	Usage Guidelines and Requirements
	The Nine E-utilities in Brief
	Understanding the E-utilities Within Entrez
	Combining E-utility Calls to Create Entrez Applications
	Demonstration Programs
	For More Information

	Sample Applications of the E-utilities
	Introduction
	Basic Pipelines
	ESearch – ESummary/EFetch
	EPost – ESummary/EFetch
	ELink – ESummary/Efetch
	ESearch – ELink – ESummary/EFetch
	EPost – ELink – ESummary/EFetch
	EPost – ESearch
	ELink – ESearch
	Application 1: Converting GI numbers to accession numbers
	Application 2: Converting accession numbers to data
	Application 3: Retrieving large datasets
	Application 4: Finding unique sets of linked records for each member of a large dataset
	Demonstration Programs
	For More Information

	The E-utilities In-Depth: Parameters, Syntax and More
	Introduction
	General Usage Guidelines
	E-utilities DTDs
	EInfo
	ESearch
	EPost
	ESummary
	EFetch
	ELink
	EGQuery
	ESpell
	ECitMatch
	Release Notes
	Demonstration Programs
	For More Information

	The E-utility Web Service SOAP
	Termination Announcement
	For More Information

	Entrez Direct: E-utilities on the Unix Command Line
	Getting Started
	Searching and Filtering
	Structured Data
	Complex Objects
	Sequence Records
	Sequence Coordinates
	Gene Records
	External Data
	Local PubMed Cache
	Automation
	Additional Examples
	Appendices
	Release Notes
	For More Information

	Entrez Direct Release Notes
	Entrez Direct Examples

