U.S. flag

An official website of the United States government

Format
Items per page
Sort by

Send to:

Choose Destination

Links from GEO DataSets

Items: 20

1.

Base Resolution Analysis of 5-Hydroxymethylcytosine in the Mammalian Genome

(Submitter supplied) The study of 5-hydroxylmethylcytosines (5hmC), the sixth base of the mammalian genome, as an epigenetic mark has been hampered by a lack of method to map it at single-base resolution. Previous affinity purification-based methods could not precisely locate 5hmC nor accurately determine its relative abundance at each modified site. We here present a genome-wide approach for mapping 5hmC at base resolution. more...
Organism:
Mus musculus; Homo sapiens
Type:
Methylation profiling by high throughput sequencing
Platforms:
GPL10999 GPL11154 GPL13112
3 Samples
Download data: BED, TXT
Series
Accession:
GSE36173
ID:
200036173
2.

Genome-wide mapping of 5-hydroxymethylcytosine in embryonic stem cells

(Submitter supplied) 5hmC and TET proteins have been implicated in stem cell biology and cancer, but information on the genome-wide distribution of 5hmC is limited. Here we describe two novel and specific approaches to profile the genomic localisation of 5hmC. The first approach, termed GLIB (GLucosylation, perIodate oxidation, Biotinylation) uses a combination of enzymatic and chemical steps to isolate DNA fragments containing as few as a single 5hmC. more...
Organism:
Mus musculus
Type:
Methylation profiling by high throughput sequencing; Other
Platforms:
GPL9250 GPL14759
9 Samples
Download data: BED
Series
Accession:
GSE28682
ID:
200028682
3.

Application of a low cost array-based technique - TAB-Array - for quantifying and mapping both 5mC and 5hmC at single base resolution.

(Submitter supplied) 5-hydroxymethylcytosine (5hmC), an oxidized derivative of 5-methylcytosine (5mC), has been implicated as an important epigenetic regulator of mammalian development. Current procedures use cost-prohibitive DNA sequencing methods to discriminate 5hmC from 5mC, limiting their accessibility to the scientific community. Here we report a method that combines TET-assisted bisulfite conversion with Illumina 450K DNA methylation arrays for a low-cost high-throughput approach that distinguishes 5hmC and 5mC signals. more...
Organism:
Homo sapiens
Type:
Methylation profiling by genome tiling array
Platform:
GPL13534
18 Samples
Download data: TXT
Series
Accession:
GSE60225
ID:
200060225
4.

Comprehensive evaluation of genome-wide 5-hydroxymethylcytosine profiling approaches in human DNA

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Homo sapiens
Type:
Methylation profiling by genome tiling array; Methylation profiling by high throughput sequencing
Platforms:
GPL13534 GPL16791 GPL20795
19 Samples
Download data: BED, BW, IDAT
Series
Accession:
GSE94368
ID:
200094368
5.

Comprehensive evaluation of genome-wide 5-hydroxymethylcytosine profiling approaches in human DNA [MeDIP-seq]

(Submitter supplied) The gold standard bisulphite conversion technologies to study DNA methylation do not distinguish between 5mC and 5hmC, however new approaches to map 5hmC genome-wide have advanced rapidly, although it is unclear how the different methods compare in accurately calling 5hmC. In this study, we provide a comparative analysis on brain DNA using three 5hmC genome-wide approaches; namely whole-genome bisulphite/oxidative-bisulphite sequencing (WG Bis/OxBis-seq), Infinium HumanMethylation450 BeadChip arrays coupled with oxidative bisulphite (HM450K Bis/OxBis) and antibody-based immunoprecipitation and sequencing of hydroxymethylated DNA (hMeDIP-seq). more...
Organism:
Homo sapiens
Type:
Methylation profiling by high throughput sequencing
Platform:
GPL16791
5 Samples
Download data: BED, BW
Series
Accession:
GSE94356
ID:
200094356
6.

Comprehensive evaluation of genome-wide 5-hydroxymethylcytosine profiling approaches in human DNA [BiSulfite-seq]

(Submitter supplied) The gold standard bisulphite conversion technologies to study DNA methylation do not distinguish between 5mC and 5hmC, however new approaches to map 5hmC genome-wide have advanced rapidly, although it is unclear how the different methods compare in accurately calling 5hmC. In this study, we provide a comparative analysis on brain DNA using three 5hmC genome-wide approaches; namely whole-genome bisulphite/oxidative-bisulphite sequencing (WG Bis/OxBis-seq), Infinium HumanMethylation450 BeadChip arrays coupled with oxidative bisulphite (HM450K Bis/OxBis) and antibody-based immunoprecipitation and sequencing of hydroxymethylated DNA (hMeDIP-seq). more...
Organism:
Homo sapiens
Type:
Methylation profiling by high throughput sequencing
Platform:
GPL20795
6 Samples
Download data: TSV
Series
Accession:
GSE94331
ID:
200094331
7.

Comprehensive evaluation of genome-wide 5-hydroxymethylcytosine profiling approaches in human DNA [HumanMethylation450]

(Submitter supplied) The gold standard bisulphite conversion technologies to study DNA methylation do not distinguish between 5mC and 5hmC, however new approaches to map 5hmC genome-wide have advanced rapidly, although it is unclear how the different methods compare in accurately calling 5hmC. In this study, we provide a comparative analysis on brain DNA using three 5hmC genome-wide approaches; namely whole-genome bisulphite/oxidative-bisulphite sequencing (WG Bis/OxBis-seq), Infinium HumanMethylation450 BeadChip arrays coupled with oxidative bisulphite (HM450K Bis/OxBis) and antibody-based immunoprecipitation and sequencing of hydroxymethylated DNA (hMeDIP-seq). more...
Organism:
Homo sapiens
Type:
Methylation profiling by genome tiling array
Platform:
GPL13534
8 Samples
Download data: IDAT
Series
Accession:
GSE94326
ID:
200094326
8.

5-hydroxymethylcytosine is associated with enhancers and gene bodies in human embryonic stem cells.

(Submitter supplied) Hydroxymethylcytosine (5hmC) was recently found to be abundantly present in certain cell types including embryonic stem cells. The function of 5hmC is poorly understood. Here we have generated a genome-wide map of 5hmC in human embryonic stem cells (hESCs) by hydroxymethyl-DNA immunoprecipitation followed by massively parallel sequencing (hmeDIP-seq). We found that 5hmC is enriched over enhancers as well as gene bodies, suggesting a potential role of 5hmC in gene regulation. more...
Organism:
Homo sapiens
Type:
Methylation profiling by high throughput sequencing
Platform:
GPL9115
4 Samples
Download data: TXT
Series
Accession:
GSE27627
ID:
200027627
9.

Quantitative sequencing of 5-formylcytosine in DNA at single-base resolution

(Submitter supplied) Cytosine base modifications 5-methylcytosine (5mC), 5-hydroxymethylcytosine (5hmC) and 5-formylcytosine (5fC) are present in mammalian DNA. Here, reduced bisulfite sequencing is developed for quantitatively sequencing 5fC at single-base resolution. This method is then applied with oxidative bisulfite sequencing to gain a map of 5mC, 5hmC and 5fC in mouse embryonic stem cells.
Organism:
Mus musculus
Type:
Methylation profiling by high throughput sequencing
Platform:
GPL13112
12 Samples
Download data: BED, BEDGRAPH, TXT
Series
Accession:
GSE56572
ID:
200056572
10.

Genome-wide Regulation of 5hmC, 5mC and Gene Expression by Tet1 Hydroxylase in Mouse Embryonic Stem Cells (bisulfite sequencing data)

(Submitter supplied) DNA methylation of C5-cytosine (5mC) in the mammalian genome is a key epigenetic event that is critical for various cellular processes. However, how the genome-wide 5mC pattern is dynamically regulated remains a fundamental question in epigenetic biology. The TET family of 5mC hydroxylases, which convert 5mC to 5-hydroxymethylcytosine (5hmC), have provided a new potential mechanism for the dynamic regulation of DNA methylation. more...
Organism:
Mus musculus
Type:
Methylation profiling by high throughput sequencing
Platform:
GPL11002
4 Samples
Download data: BED, TXT
Series
Accession:
GSE28533
ID:
200028533
11.

Genome-wide Regulation of 5hmC, 5mC and Gene Expression by Tet1 Hydroxylase in Mouse Embryonic Stem Cells (ChIP-seq data)

(Submitter supplied) DNA methylation of C5-cytosine (5mC) in the mammalian genome is a key epigenetic event that is critical for various cellular processes. However, how the genome-wide 5mC pattern is dynamically regulated remains a fundamental question in epigenetic biology. The TET family of 5mC hydroxylases, which convert 5mC to 5-hydroxymethylcytosine (5hmC), have provided a new potential mechanism for the dynamic regulation of DNA methylation. more...
Organism:
Mus musculus
Type:
Genome binding/occupancy profiling by high throughput sequencing; Methylation profiling by high throughput sequencing; Expression profiling by high throughput sequencing
Platform:
GPL9185
14 Samples
Download data: BED
Series
Accession:
GSE28532
ID:
200028532
12.

Genome-wide Regulation of 5hmC, 5mC and Gene Expression by Tet1 Hydroxylase in Mouse Embryonic Stem Cells (expression data)

(Submitter supplied) DNA methylation of C5-cytosine (5mC) in the mammalian genome is a key epigenetic event that is critical for various cellular processes. However, how the genome-wide 5mC pattern is dynamically regulated remains a fundamental question in epigenetic biology. The TET family of 5mC hydroxylases, which convert 5mC to 5-hydroxymethylcytosine (5hmC), have provided a new potential mechanism for the dynamic regulation of DNA methylation. more...
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL1261
5 Samples
Download data: CEL
Series
Accession:
GSE28530
ID:
200028530
13.

Genome-wide Regulation of 5hmC, 5mC and Gene Expression by Tet1 Hydroxylase in Mouse Embryonic Stem Cells

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Mus musculus
Type:
Expression profiling by array; Genome binding/occupancy profiling by high throughput sequencing; Methylation profiling by high throughput sequencing; Expression profiling by high throughput sequencing
Platforms:
GPL9185 GPL1261 GPL11002
23 Samples
Download data: BED, CEL
Series
Accession:
GSE28500
ID:
200028500
14.

Genome-wide profiling of 5-Formylcytosine reveals it roles in epigenetic priming

(Submitter supplied) TET proteins oxidize 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC). 5fC and 5caC are excised by mammalian DNA glycosylase TDG, implicating 5mC oxidation in DNA demethylation. Here we show that the genomic locations of 5fC can be determined by coupling chemical reduction with biotin tagging. Genome-wide mapping of 5fC in mouse embryonic stem cells (mESCs) reveals that 5fC preferentially occurs at poised enhancers among other gene regulatory elements. more...
Organism:
Mus musculus
Type:
Genome binding/occupancy profiling by high throughput sequencing; Expression profiling by high throughput sequencing; Methylation profiling by high throughput sequencing
Platforms:
GPL16173 GPL13112
30 Samples
Download data: BED, TXT
Series
Accession:
GSE41545
ID:
200041545
15.

Genome-wide analysis of 5-hydroxymethylcytosine distribution reveals its dual function in transcriptional regulation in mouse embryonic stem cells

(Submitter supplied) Recent studies have demonstrated that the Ten-eleven translocation (Tet) family proteins can enzymatically convert 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC). While 5mC has been studied extensively, little is known about the distribution and function of 5hmC. Here we present a genome-wide profile of 5hmC in mouse embryonic stem (ES) cells. A combined analysis of global 5hmC distribution and gene expression profile in wild-type and Tet1-depleted ES cells revealed suggests that 5hmC is enriched at both gene bodies of actively transcribed genes and extended promoter regions of Polycomb-repressed developmental regulators. more...
Organism:
Mus musculus
Type:
Methylation profiling by genome tiling array
4 related Platforms
10 Samples
Download data: PAIR
Series
Accession:
GSE27613
ID:
200027613
16.

Dual functions of Tet1 in transcriptional regulation in mouse embryonic stem cells

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Mus musculus
Type:
Expression profiling by array; Genome binding/occupancy profiling by genome tiling array; Genome binding/occupancy profiling by high throughput sequencing; Methylation profiling by genome tiling array
6 related Platforms
38 Samples
Download data: CEL, PAIR, TXT
Series
Accession:
GSE26833
ID:
200026833
17.

Dual functions of Tet1 in transcriptional regulation in mouse embryonic stem cells (ChIP-Seq)

(Submitter supplied) Epigenetic modification of the mammalian genome by DNA methylation (5-methylcytosine) has a profound impact on chromatin structure, gene expression and maintenance of cellular identity. Recent demonstration that members of the Ten-eleven translocation (Tet) family proteins can convert 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) raised the possibility that Tet proteins are capable of establishing a distinct epigenetic state. more...
Organism:
Mus musculus
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL9185
6 Samples
Download data: TXT
Series
Accession:
GSE26832
ID:
200026832
18.

Dual functions of Tet1 in transcriptional regulation in mouse embryonic stem cells (mRNA)

(Submitter supplied) Epigenetic modification of the mammalian genome by DNA methylation (5-methylcytosine) has a profound impact on chromatin structure, gene expression and maintenance of cellular identity. Recent demonstration that members of the Ten-eleven translocation (Tet) family proteins can convert 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) raised the possibility that Tet proteins are capable of establishing a distinct epigenetic state. more...
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL1261
12 Samples
Download data: CEL
Series
Accession:
GSE26830
ID:
200026830
19.

Dual functions of Tet1 in transcriptional regulation in mouse embryonic stem cells (ChIP-chip and MeDIP-chip)

(Submitter supplied) Epigenetic modification of the mammalian genome by DNA methylation (5-methylcytosine) has a profound impact on chromatin structure, gene expression and maintenance of cellular identity. Recent demonstration that members of the Ten-eleven translocation (Tet) family proteins can convert 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) raised the possibility that Tet proteins are capable of establishing a distinct epigenetic state. more...
Organism:
Mus musculus
Type:
Genome binding/occupancy profiling by genome tiling array; Methylation profiling by genome tiling array
4 related Platforms
20 Samples
Download data: PAIR, TXT
Series
Accession:
GSE26827
ID:
200026827
20.

Bisulfite-free and Base-resolution Analysis of 5-formylcytosine at Whole-genome Scale

(Submitter supplied) Active DNA demethylation in mammals involves TET-mediated oxidation of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxycytosine (5caC). However, genome-wide detection of 5fC at single-base resolution remains challenging. Here we present a bisulfite-free method for the whole-genome analysis of 5fC, based on a selective chemical labeling of 5fC and subsequent C-to-T transition during PCR. more...
Organism:
Mus musculus
Type:
Methylation profiling by high throughput sequencing; Other
Platform:
GPL17021
12 Samples
Download data: BEDGRAPH, TXT
Series
Accession:
GSE66144
ID:
200066144
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

db=gds|term=|query=1|qty=3|blobid=MCID_66703d5ace9c6e4cac2532ce|ismultiple=true|min_list=5|max_list=20|def_tree=20|def_list=|def_view=|url=/Taxonomy/backend/subset.cgi?|trace_url=/stat?
   Taxonomic Groups  [List]
Tree placeholder
    Top Organisms  [Tree]

Find related data

Recent activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...
Support Center