NCBI Logo
GEO Logo
   NCBI > GEO > Accession DisplayHelp Not logged in | LoginHelp
GEO help: Mouse over screen elements for information.
          Go
Series GSE18760 Query DataSets for GSE18760
Status Public on Jul 21, 2010
Title IMR90 bystander experiment 0.5 Gy alpha particle
Organism Homo sapiens
Experiment type Expression profiling by array
Summary The existence of a radiation bystander effect, in which non-irradiated cells respond to signals from irradiated cells, is well established. It raises concerns for the interpretation of risks from exposure to low doses of ionizing radiation. Sparse data exists about the bystander signaling mechanisms and the ability to transmit damaging effects both spatially and temporally. To understand early signaling and cellular changes in bystanders, we have measured global gene expression 30 minutes after direct and bystander exposure to alpha particle in primary human lung fibroblasts. Gene ontology and pathway analyses suggested that the earliest measured changes at 30 minutes after treatment are in cell structure, motility and adhesion categories and a significant number of genes belong to the category of inflammation and cell-to-cell communication. We investigated time course gene expression profiles of matrix metalloproteinases 1 and 3 (MMP1 and MMP3), chemokine ligands 2, 3 and 5 (CXCL2, CXCL3 and CXCL5), interleukins 1a, 1b, 6 and 33 (IL1A, IL1B, IL6 and IL33) growth differentiation factor 15 (GDF15) and superoxide dismutase2 (SOD2) by real time quantitative PCR. These encode proteins involved in cellular signaling via the NFkappaB pathway and time course of mRNA levels revealed an increased response at 30 minutes after irradiation followed by another wave at 4 to 6 hours. We also investigated protein modifications in the AKT-GSK-3 signaling pathway and found that in irradiated cells AKT and GSK3beta are hyper-phosphorylated at 30 minutes and this effect is maintained until 4 hours after exposure. In bystanders there is a similar response with a delay of 30 minutes. In irradiated cells, inactivated GSK3beta led to decreased phosphorylation of beta-catenin. Our results are the first to show that the radiation induced bystander signal can induce a widespread gene expression response as early as 30 minutes after exposure and that these changes are accompanied by protein modification of signaling modules such as AKT and GSK3beta.
 
Overall design There are 12 total samples, 4 corresponding biological replicates of IMR90 cells that were not irradiated (control=C), irradiated (alpha=A) and bystander (B), cells were harvested 0.5 hr after treatment
 
Contributor(s) Ghandhi SA, Amundson SA
Citation(s) 20670442
Submission date Oct 27, 2009
Last update date Jan 23, 2019
Contact name Shanaz Adi Ghandhi
E-mail(s) shanazg@gmail.com
Phone 212-3053911
Organization name Columbia University Medical Center
Department Center for Radiological Research
Lab VC11-237
Street address 630, W 168th street
City New York
State/province NY
ZIP/Postal code 10032
Country USA
 
Platforms (1)
GPL6480 Agilent-014850 Whole Human Genome Microarray 4x44K G4112F (Probe Name version)
Samples (12)
GSM465717 IMR90_0.5 h_alpha_rep1
GSM465718 IMR90_0.5 h_alpha_rep2
GSM465719 IMR90_0.5 h_alpha_rep3
Relations
BioProject PRJNA121605

Download family Format
SOFT formatted family file(s) SOFTHelp
MINiML formatted family file(s) MINiMLHelp
Series Matrix File(s) TXTHelp

Supplementary file Size Download File type/resource
GSE18760_RAW.tar 93.2 Mb (http)(custom) TAR (of TXT)
Processed data included within Sample table

| NLM | NIH | GEO Help | Disclaimer | Accessibility |
NCBI Home NCBI Search NCBI SiteMap