NCBI Logo
GEO Logo
   NCBI > GEO > Accession DisplayHelp Not logged in | LoginHelp
GEO help: Mouse over screen elements for information.
          Go
Series GSE19335 Query DataSets for GSE19335
Status Public on Sep 09, 2010
Title Control of endothelial sprouting by a Tel-CtBP complex
Organism Homo sapiens
Experiment type Expression profiling by array
Summary Branching from conduits is a defining feature of the gas delivery systems of invertebrates (tracheae built from epithelial cells) and vertebrates (vasculature lined by endothelial cells). Here, we show that the vertebrate transcriptional repressor Tel plays an evolutionarily conserved role in angiogenesis: it is indispensable for sprouting of primary human endothelial cells and for the normal development of the Danio rerio embryo blood circulatory system. Tel controls endothelial sprouting via binding to the generic co-repressor C-terminal binding protein (CtBP). In endothelial cells, the Tel:CtBP complex temporally restricts a VEGF-mediated pulse of dll4 expression and consequently integrates VEGFR intracellular signaling and intercellular Notch-Dll4 signaling. It further refines branching by regulating expression of other factors that constrain angiogenesis such as sprouty family members and ve-cadherin. Thus, the Tel:CtBP complex moderates the balance between positive and antagonistic angiogenesis cues and thereby conditions endothelial cells for angiogenesis. Since the activity of CtBP is attuned to intracellular NADH levels, our results raise the possibility that Tel-mediated sprouting could be sensitized to the metabolic status of the tissue. Tel control of branching appears to be evolutionarily conserved since Yan, the invertebrate orthologue of Tel, is similarly required for branching morphogenesis of the invertebrate tracheae. Collectively, our work suggests that Tel is a central regulator of angiogenesis and highlights Tel and its associated networks as potential targets for the development of therapeutic strategies to inhibit pathological angiogenesis.
 
Overall design 2 independent screens were performed testing effects of knockdown of Tel or CtBP (screen 1) or effects of VEGF-A (screen 2) on Human Umbilical Vein Endothelial Cells (HUVECs).
For screen 1 we tested 3 different conditions. We established stable HUVEC cell lines which were either infected with control lentivirus (Mock), or lentivirus expressing short hairpin RNA constructs for the specific knockdown of Tel(Teli) or CtBP2 (CtBP2i). Expression in the Teli and CtBP2i cell lines was compared to expression in the Mock cell line for screen 1.
For screen 2 we tested 2 conditions. We exposed HUVECs to VEGF (50ng/mL) for 30 minutes (samplename: VEGF30) and compared the transcriptome of these cells to untreated HUVECs (VEGF0).
For each condition 2 independent repeats were analyzed and expression of genes was averaged for each repeat. HUVECs were grown under standard conditions (37degrees Celsius, 5% CO2) in EGM2 medium (Lonza).
 
Contributor(s) Roukens MG, Baker DA
Citation(s) 20835243
Submission date Dec 04, 2009
Last update date Aug 16, 2018
Contact name Guy Roukens
Organization name Hubrecht Institute
Street address Uppsalalaan 8
City Utrecht
ZIP/Postal code 3584 CT Utrecht
Country Netherlands
 
Platforms (1)
GPL6947 Illumina HumanHT-12 V3.0 expression beadchip
Samples (10)
GSM480349 screen 1: MockA
GSM480350 screen 1: MockB
GSM480351 screen 1: TeliA
Relations
BioProject PRJNA121703

Download family Format
SOFT formatted family file(s) SOFTHelp
MINiML formatted family file(s) MINiMLHelp
Series Matrix File(s) TXTHelp

Supplementary file Size Download File type/resource
GSE19335_RAW.tar 6.2 Mb (http)(custom) TAR
GSE19335_non-normalized.txt.gz 3.3 Mb (ftp)(http) TXT
Processed data included within Sample table

| NLM | NIH | GEO Help | Disclaimer | Accessibility |
NCBI Home NCBI Search NCBI SiteMap