NCBI Logo
GEO Logo
   NCBI > GEO > Accession DisplayHelp Not logged in | LoginHelp
GEO help: Mouse over screen elements for information.
          Go
Series GSE29806 Query DataSets for GSE29806
Status Public on Jun 09, 2011
Title Naturally transmitted segmented filamentous bacteria segregate with diabetes protection in NOD mice
Organism Mus musculus
Experiment type Expression profiling by array
Summary Vertebrates typically harbor a rich gastrointestinal microbiota, which has co-evolved with the host over millennia and is essential for several of its physiological functions, in particular maturation of the immune system. Recent studies have highlighted the importance of a single bacterial species, segmented filamentous bacteria (SFB), in inducing a robust T helper (Th)17 population in the small intestinal lamina propria (SI-LP) of the mouse gut. Consequently, SFB can promote IL-17-dependent immune and autoimmune responses, gut-associated as well as systemic, including inflammatory arthritis and experimental autoimmune encephalomyelitis. Here, we exploit the incomplete penetrance of SFB colonization of NOD mice in our animal facility to explore its impact on the incidence and course of type-1 diabetes in this prototypical, spontaneous model. There was a strong co-segregation of SFB-positivity and diabetes protection in females, but not in males, which remained relatively disease-free regardless of the SFB status. In contrast, insulitis did not depend on SFB colonization. SFB-positive, but not SFB-negative, females had a substantial population of Th17 cells in the SI-LP, which was the only significant, repeatable difference in the examined T cell compartments of the gut, pancreas or systemic lymphoid tissues. Th17 signature transcripts dominated the very limited SFB-induced molecular changes detected in SI-LP CD4+ T cells. Thus, a single bacterium, and the gut immune system alterations associated with it, can either promote or protect from autoimmunity in predisposed mouse models, likely reflecting their variable dependence on different Th subsets.
 
Overall design All gene expression profiles were obtained from highly purified T cell populations sorted by flow cytometry. Cells were sorted from individual mice with at least four replicates generated for all groups. RNA from 1-5 x 104 cells was amplified, labeled, and hybridized to Affymetrix Mo GENE 1.0ST microarrays. Raw data were preprocessed with the RMA algorithm in GenePattern, and averaged expression values were used for analysis.
 
Contributor(s) Kriegel MA, Sefik E, Hill JA, Wu H, Benoist C, Mathis D
Citation(s) 21709219
Submission date Jun 08, 2011
Last update date Mar 04, 2019
Contact name CBDM Lab
E-mail(s) cbdm@hms.harvard.edu
Phone 617-432-7747
Organization name Harvard Medical School
Department Microbiology and Immunobiology
Lab CBDM
Street address 77 Avenue Louis Pasteur
City Boston
State/province MA
ZIP/Postal code 02215
Country USA
 
Platforms (1)
GPL6246 [MoGene-1_0-st] Affymetrix Mouse Gene 1.0 ST Array [transcript (gene) version]
Samples (26)
GSM738778 NOD.LP.SFBpos-1
GSM738779 NOD.LP.SFBpos-2
GSM738780 NOD.LP.SFBpos-3
Relations
BioProject PRJNA140917

Download family Format
SOFT formatted family file(s) SOFTHelp
MINiML formatted family file(s) MINiMLHelp
Series Matrix File(s) TXTHelp

Supplementary file Size Download File type/resource
GSE29806_RAW.tar 107.1 Mb (http)(custom) TAR (of CEL)
Processed data included within Sample table

| NLM | NIH | GEO Help | Disclaimer | Accessibility |
NCBI Home NCBI Search NCBI SiteMap