NCBI Logo
GEO Logo
   NCBI > GEO > Accession DisplayHelp Not logged in | LoginHelp
GEO help: Mouse over screen elements for information.
          Go
Series GSE42612 Query DataSets for GSE42612
Status Public on Nov 30, 2012
Title Quiescent Fibroblasts Exhibit High Metabolic Activity
Organism Homo sapiens
Experiment type Expression profiling by array
Summary Many cells in mammals exist in the state of quiescence, which is characterized by reversible exit from the cell cycle. Quiescent cells are widely reported to exhibit reduced size, nucleotide synthesis, and metabolic activity. Much lower glycolytic rates have been reported in quiescent compared with proliferating lymphocytes. In contrast, we show here that primary human fibroblasts continue to exhibit high metabolic rates when induced into quiescence via contact inhibition. By monitoring isotope labeling through metabolic pathways and quantitatively identifying fluxes from the data, we show that contact-inhibited fibroblasts utilize glucose in all branches of central carbon metabolism at rates similar to those of proliferating cells, with greater overflow flux from the pentose phosphate pathway back to glycolysis. Inhibition of the pentose phosphate pathway resulted in apoptosis preferentially in quiescent fibroblasts. By feeding the cells labeled glutamine, we also detected a “backwards” flux in the tricarboxylic acid cycle from α-ketoglutarate to citrate that was enhanced in contact-inhibited fibroblasts; this flux likely contributes to shuttling of NADPH from the mitochondrion to cytosol for redox defense or fatty acid synthesis. The high metabolic activity of the fibroblasts was directed in part toward breakdown and resynthesis of protein and lipid, and in part toward excretion of extracellular matrix proteins. Thus, reduced metabolic activity is not a hallmark of the quiescent state. Quiescent fibroblasts, relieved of the biosynthetic requirements associated with generating progeny, direct their metabolic activity to preservation of self integrity and alternative functions beneficial to the organism as a whole.
 
Overall design mRNAs were analyzed by two color microarray from two separate human neonatal dermal fibroblasts cell lines in proliferating, 7 days contact inhibition, or 14 days contact inhibition. Contact inhibited samples were co-hybridized to proliferating samples as a control, while an additional array co-hybridized the two proliferating samples to analyze reproducibility.
 
Contributor(s) Lemons JM, Feng X, Bennet BD, Legesse-Miller A, Johnson EL, Raitman I, Pollina EA, Rabitz HA, Rabinowitz JD, Coller HA
Citation(s) 21049082
Submission date Nov 29, 2012
Last update date Jan 23, 2019
Contact name Eric Jungwoo Suh
Organization name Princeton University
Department Molecular Biology
Lab Coller Lab
Street address 14 Washington Rd
City Princeton
State/province NJ
ZIP/Postal code 08544
Country USA
 
Platforms (1)
GPL6480 Agilent-014850 Whole Human Genome Microarray 4x44K G4112F (Probe Name version)
Samples (5)
GSM1045796 P_P_control
GSM1045797 7dCI_rep1
GSM1045798 7dCI_rep2
Relations
BioProject PRJNA182355

Download family Format
SOFT formatted family file(s) SOFTHelp
MINiML formatted family file(s) MINiMLHelp
Series Matrix File(s) TXTHelp

Supplementary file Size Download File type/resource
GSE42612_RAW.tar 76.2 Mb (http)(custom) TAR (of TXT)
Processed data included within Sample table

| NLM | NIH | GEO Help | Disclaimer | Accessibility |
NCBI Home NCBI Search NCBI SiteMap