NCBI Logo
GEO Logo
   NCBI > GEO > Accession DisplayHelp Not logged in | LoginHelp
GEO help: Mouse over screen elements for information.
          Go
Series GSE47629 Query DataSets for GSE47629
Status Public on Sep 13, 2013
Title Modulation of enhancer looping and differential gene targeting by Epstein-Barr virus transcription factors directs epigenetic reprogramming
Organism Homo sapiens
Experiment type Genome binding/occupancy profiling by high throughput sequencing
Summary Epstein-Barr virus (EBV) epigenetically reprogrammes B-lymphocytes to drive immortalization and facilitate viral persistence. Host-cell transcription is perturbed principally through the actions of EBV EBNA 2, 3A, 3B and 3C, with cellular genes deregulated by specific combinations of these EBNAs through unknown mechanisms. Comparing human genome binding by these viral transcription factors we discovered that 25% of binding sites were shared by EBNA 2 and the EBNA 3s and were located predominantly in enhancers. Moreover, 80% of potential EBNA 3A, 3B or 3C target genes were also targeted by EBNA 2, implicating extensive interplay between EBNA 2 and 3 proteins in cellular reprogramming. Investigating shared enhancer sites neighbouring two new targets (WEE1 and CTBP2) we discovered that EBNA 3 proteins repress transcription by modulating enhancer-promoter loop formation to establish repressive chromatin hubs or prevent assembly of active hubs. Re-ChIP analysis revealed that EBNA 2 and 3 proteins do not bind simultaneously at shared sites but compete for binding thereby modulating enhancer-promoter interactions. At an EBNA 3-only intergenic enhancer site between ADAM28 and ADAMDEC1 EBNA 3C was also able to independently direct epigenetic repression of both genes through enhancer-promoter looping. Significantly, studying shared or unique EBNA 3 binding sites at WEE1, CTBP2, ITGAL (LFA-1 alpha chain), BCL2L11 (Bim) and the ADAMs, we also discovered that different sets of EBNA 3 proteins bind regulatory elements in a gene and cell-type specific manner. Binding profiles correlated with the effects of individual EBNA 3 proteins on the expression of these genes, providing a molecular mechanism for the targeting of different sets of cellular genes by the EBNA 3s. Our results therefore highlight the influence of the genomic and cellular context in determining the specificity of gene deregulation by EBV and provide a paradigm for host-cell reprogramming through modulation of enhancer-promoter interactions by viral transcription factors.
 
Overall design Examination of EBNA 3 protein binding (EBNA 3A, 3B and 3C) using a pan-specific antibody and EBNA 2 binding in single ChIP-seq experiments carried out in the Mutu III Burkitt's lymphoma cell-line.
 
Contributor(s) McClellan MJ, Wood CD, Ojeniyi O, Cooper TJ, Kanhere A, Arvey A, Webb HM, Harth-Hertle ML, Kempkes B, Jenner RG, West MJ
Citation(s) 24068937
Submission date Jun 04, 2013
Last update date May 15, 2019
Contact name Aditi Kanhere
E-mail(s) a.kanhere@liverpool.ac.uk
Organization name University of Liverpool
Street address Institute of Systems, Molecular and Integrative Biology
City Liverpool
ZIP/Postal code L69 3GE
Country United Kingdom
 
Platforms (1)
GPL10999 Illumina Genome Analyzer IIx (Homo sapiens)
Samples (3)
GSM1153764 input DNA
GSM1153765 EBNA 2 ChIP-seq
GSM1153766 EBNA 3 ChIP-seq
Relations
BioProject PRJNA206727
SRA SRP023634

Download family Format
SOFT formatted family file(s) SOFTHelp
MINiML formatted family file(s) MINiMLHelp
Series Matrix File(s) TXTHelp

Supplementary file Size Download File type/resource
GSE47629_RAW.tar 420.0 Kb (http)(custom) TAR (of TXT)
SRA Run SelectorHelp
Raw data are available in SRA
Processed data provided as supplementary file

| NLM | NIH | GEO Help | Disclaimer | Accessibility |
NCBI Home NCBI Search NCBI SiteMap