NCBI Logo
GEO Logo
   NCBI > GEO > Accession DisplayHelp Not logged in | LoginHelp
GEO help: Mouse over screen elements for information.
          Go
Series GSE51041 Query DataSets for GSE51041
Status Public on Mar 19, 2014
Title DUX4 binding to retroelements creates promoters that are active in FSHD muscle and testis.
Organism Homo sapiens
Experiment type Expression profiling by high throughput sequencing
Summary The human double-homeodomain retrogene DUX4 is expressed in the testis and epigenetically repressed in somatic tissues. Facioscapulohumeral muscular dystrophy (FSHD) is caused by mutations that decrease the epigenetic repression of DUX4 in somatic tissues and result in mis-expression of this transcription factor in skeletal muscle. DUX4 binds sites in the human genome that contain a double-homeobox sequence motif, including sites in unique regions of the genome as well as many sites in repetitive elements. Using ChIP-seq and RNA-seq on myoblasts transduced with DUX4 we show that DUX4 binds and activates transcription of mammalian apparent LTR-retrotransposons (MaLRs), endogenous retrovirus (ERVL and ERVK) elements, and pericentromeric satellite HSATII sequences. Some DUX4-activated MaLR and ERV elements create novel promoters for genes, long non-coding RNAs, and antisense transcripts. Many of these novel transcripts are expressed in FSHD muscle cells but not control cells, and thus might contribute to FSHD pathology. For example, HEY1, a repressor of myogenesis, is activated by DUX4 through a MaLR promoter. DUX4-bound motifs, including those in repetitive elements, show evolutionary conservation and some repeat-initiated transcripts are expressed in healthy testis, the normal expression site of DUX4, but more rarely in other somatic tissues. Testis expression patterns are known to have evolved rapidly in mammals, but the mechanisms behind this rapid change have not yet been identified: our results suggest that mobilization of MaLR and ERV elements during mammalian evolution altered germline gene expression patterns through transcriptional activation by DUX4. Our findings demonstrate a role for DUX4 and repetitive elements in mammalian germline evolution and in FSHD muscular dystrophy.
 
Overall design RNA-seq of differentiated human primary myotube cell lines for FSHD patients and control samples

Raw data not provided due to patient privacy concerns.
 
Contributor(s) Young JM, Whiddon JL, Yao Z, Kasinathan B, Snider L, Geng LN, Balog J, Tawil R, van der Maarel SM, Tapscott SJ
Citation(s) 24278031
Submission date Sep 20, 2013
Last update date Mar 27, 2019
Contact name Stephen Tapscott
E-mail(s) stapscot@fredhutch.org
Organization name Fred Hutch Cancer Research Center
Department Human Biology
Lab Tapscott
Street address 1100 Fairview N. Ave
City Seattle
State/province WASHINGTON
ZIP/Postal code 98103
Country USA
 
Platforms (1)
GPL16791 Illumina HiSeq 2500 (Homo sapiens)
Samples (5)
GSM1236460 2315tube
GSM1236461 2316tube
GSM1236462 1926tube
Relations
BioProject PRJNA219734

Download family Format
SOFT formatted family file(s) SOFTHelp
MINiML formatted family file(s) MINiMLHelp
Series Matrix File(s) TXTHelp

Supplementary file Size Download File type/resource
GSE51041_gene.counts.csv.gz 481.0 Kb (ftp)(http) CSV
Processed data are available on Series record
Raw data not provided for this record

| NLM | NIH | GEO Help | Disclaimer | Accessibility |
NCBI Home NCBI Search NCBI SiteMap