NCBI Logo
GEO Logo
   NCBI > GEO > Accession DisplayHelp Not logged in | LoginHelp
GEO help: Mouse over screen elements for information.
          Go
Series GSE56053 Query DataSets for GSE56053
Status Public on Sep 24, 2014
Title Epigenetic Repogramming by an Environmental Carcinogen Through Chromatin Domain Disruption
Organism Homo sapiens
Experiment type Expression profiling by high throughput sequencing
Genome binding/occupancy profiling by high throughput sequencing
Summary This SuperSeries is composed of the SubSeries listed below.

Histone modifications associated with gene silencing typically mark large contiguous regions of the genome forming repressive chromatin domain structures. Since the repressive domains exist in close proximity to active regions, maintenance of domain structure is critically important. This study shows that nickel, a nonmutagenic carcinogen, can disrupt histone H3 lysine 9 dimethylation (H3K9me2) domain structures genome-wide, resulting in spreading of H3K9me2 marks into the active regions, which is associated with gene silencing. Our results suggest inhibition of DNA binding of the insulator protein CCCTC-binding factor (CTCF) at the H3K9me2 domain boundaries as a potential reason for H3K9me2 domain disruption. These findings have major implications in understanding chromatin dynamics and the consequences of chromatin domain disruption during pathogenesis.
 
Overall design Investigations into the genomic landscape of histone modifications in heterochromatic regions have revealed histone H3 lysine 9 dimethylation (H3K9me2) to be important for differentiation and maintaining cell identity. H3K9me2 is associated with gene silencing and is organized into large repressive domains that exist in close proximity to active genes, indicating the importance of maintenance of proper domain structure. Here we show that nickel, a nonmutagenic environmental carcinogen, disrupted H3K9me2 domains, resulting in the spreading of H3K9me2 into active regions, which was associated with gene silencing. We found weak CCCTC-binding factor (CTCF)-binding sites and reduced CTCF binding at the Ni-disrupted H3K9me2 domain boundaries, suggesting a loss of CTCF-mediated insulation function as a potential reason for domain disruption and spreading. We furthermore show that euchromatin islands, local regions of active chromatin within large H3K9me2 domains, can protect genes from H3K9me2-spreading–associated gene silencing. These results have major implications in understanding H3K9me2 dynamics and the consequences of chromatin domain disruption during pathogenesis.

Refer to individual Series
 
Citation(s) 25246589
Submission date Mar 20, 2014
Last update date May 15, 2019
Contact name Dustin E Schones
E-mail(s) schoneslab@gmail.com
Phone +1-626-471-9319
Organization name City of Hope
Department Cancer Biology
Lab Schones
Street address 1500 Duarte Rd
City Duarte
State/province CA
ZIP/Postal code 91010
Country USA
 
Platforms (2)
GPL11154 Illumina HiSeq 2000 (Homo sapiens)
GPL16791 Illumina HiSeq 2500 (Homo sapiens)
Samples (14)
GSM1354430 H3K4me3_ChIPSeq_Control
GSM1354431 H3K4me3_ChIPSeq_Nickel
GSM1354432 H3K9me2_ChIPSeq_Control
This SuperSeries is composed of the following SubSeries:
GSE56051 Epigenetic Repogramming by an Environmental Carcinogen Through Chromatin Domain Disruption [ChIP-Seq]
GSE56052 Epigenetic Repogramming by an Environmental Carcinogen Through Chromatin Domain Disruption [RNA-Seq]
Relations
BioProject PRJNA242306

Download family Format
SOFT formatted family file(s) SOFTHelp
MINiML formatted family file(s) MINiMLHelp
Series Matrix File(s) TXTHelp

Supplementary file Size Download File type/resource
GSE56053_RAW.tar 2.2 Mb (http)(custom) TAR (of BED)
SRA Run SelectorHelp

| NLM | NIH | GEO Help | Disclaimer | Accessibility |
NCBI Home NCBI Search NCBI SiteMap