NCBI Logo
GEO Logo
   NCBI > GEO > Accession DisplayHelp Not logged in | LoginHelp
GEO help: Mouse over screen elements for information.
          Go
Series GSE68183 Query DataSets for GSE68183
Status Public on May 01, 2015
Title Comparative genomic, microRNA, and tissue analyses reveal subtle differences between non-diabetic and diabetic foot skin [gene expression]
Organism Homo sapiens
Experiment type Expression profiling by array
Summary Diabetes Mellitus (DM) is a chronic, severe disease rapidly increasing in incidence and prevalence and is associated with numerous complications. Patients with DM are at high risk of developing diabetic foot ulcers (DFU) that often lead to lower limb amputations, long term disability, and a shortened lifespan. Despite this, the effects of DM on human foot skin biology are largely unknown. Thus, the focus of this study was to determine whether DM changes foot skin biology predisposing it for healing impairment and development of DFU. Foot skin samples were collected from 20 patients receiving corrective foot surgery and, using a combination of multiple molecular and cellular approaches we performed comparative analyses of non-ulcerated non-neuropathic diabetic foot skin (DFS) and healthy non-diabetic foot skin (NFS). MicroRNA (miR) profiling of laser captured epidermis and primary dermal fibroblasts from both DFS and NFS samples identified 5 miRs de-regulated in the epidermis of DFS though none reached statistical significance. MiR-31-5p and miR-31-3p were most profoundly induced. Although none were significantly regulated in diabetic fibroblasts, miR-29c-3p showed a trend of up-regulation, which was confirmed by qPCR in a prospective set of 20 skin samples. Gene expression profiling of full thickness biopsies identified 36 de-regulated genes in DFS (>2 fold-change, unadjusted p-value ≤ 0.05). Of this group, three out of seven tested genes were confirmed by qPCR: SERPINB3 was up-regulated whereas OR2A4 and LGR5 were down-regulated in DFS. However no morphological differences in histology, collagen deposition, and number of blood vessels or lymphocytes were found. No difference in proliferative capacity was observed by quantification of Ki67 positive cells in epidermis. These findings suggest DM causes only subtle changes to foot skin. Since morphology, mRNA and miR levels were not affected in a major way, additional factors, such as neuropathy, vascular complications, or duration of DM, may further compromise tissue’s healing ability leading to development of DFUs.
 
Overall design Total RNA including the miRNA fraction was extracted from the samples using the QIAGEN miRNeasy mini kit and following the manufacturer’s instructions. The RNA quality was assessed using the AGILENT bioanalyzer (Agilent Technologies, Palo Alto, CA, USA) to estimate the RNA integrity number (RIN). Samples with a RIN higher than 5 were used for mRNA profiling as described below. We previously described methods for tissue specimen preparation and hybridization. All processing and analysis of microarrays utilized standard protocols at the University of Miami Microarray Core Facility. Briefly, between 100 to 300 ng of total RNA was reverse transcribed, amplified, then the sense strand cDNA synthesized, labeled, and hybridized on arrays. The amplified, fragmented and biotin-labeled cDNAs were hybridized to the Affymetrix GeneChip Human Gene 2.0 ST microarray according to the manufacturer’s recommendations. Arrays were washed and stained using Affymetrix Fluidic stations 450 and scanned using Affymetrix GeneChip scanner 3000 7G. Image analysis was performed using the Affymetrix Command Console Software (AGCC). Resulting CEL files was imported into Expression Console™ Software (Affymetrix, Santa Clara, CA, USA) and underwent gene level normalization and signal summarization. The output files from this step were imported in Transcriptome Analysis Console (TAC) 2.0 Software (Affymetrix, Santa Clara, CA, USA) to identify differentially expressed genes and carry out clustering analysis. Only genes with a p-value lower than 0.05 and a fold-change greater than 2 were confirmed by qPCR in a prospective set of 10 NFS and 10 DFS.
 
Contributor(s) Ramirez HA, Liang L, Pastar I, Rosa A, Stojadinovic O, Zwick TW, Kirsner RS, Maione AG, Garlick J, Kirsner RS, Tomic-Canic M
Citation missing Has this study been published? Please login to update or notify GEO.
Submission date Apr 23, 2015
Last update date Mar 15, 2019
Contact name Horacio Adrian Ramirez
E-mail(s) horacio.a.ramirez@gmail.com
Organization name University of Miami
Department Dermatology
Street address 1600 NW10th Avenue RMSB room 2029A
City Miami
State/province Florida
ZIP/Postal code 33136
Country USA
 
Platforms (1)
GPL16686 [HuGene-2_0-st] Affymetrix Human Gene 2.0 ST Array [transcript (gene) version]
Samples (6)
GSM1665311 Diabetic Foot Skin 01 gene expression profile
GSM1665312 Diabetic Foot Skin 02 gene expression profile
GSM1665313 Diabetic Foot Skin 03 gene expression profile
This SubSeries is part of SuperSeries:
GSE68186 Comparative genomic, microRNA, and tissue analyses reveal subtle differences between non-diabetic and diabetic foot skin
Relations
BioProject PRJNA281991

Download family Format
SOFT formatted family file(s) SOFTHelp
MINiML formatted family file(s) MINiMLHelp
Series Matrix File(s) TXTHelp

Supplementary file Size Download File type/resource
GSE68183_RAW.tar 53.0 Mb (http)(custom) TAR (of CEL, CHP)
Processed data included within Sample table
Processed data provided as supplementary file

| NLM | NIH | GEO Help | Disclaimer | Accessibility |
NCBI Home NCBI Search NCBI SiteMap