NCBI Logo
GEO Logo
   NCBI > GEO > Accession DisplayHelp Not logged in | LoginHelp
GEO help: Mouse over screen elements for information.
          Go
Series GSE69191 Query DataSets for GSE69191
Status Public on May 23, 2015
Title Age associated differences in miRNA signatures are restricted to CD45RO negative T cells and are associated with changes in the cellular composition, activation and cellular ageing
Organism Homo sapiens
Experiment type Non-coding RNA profiling by array
Summary MicroRNAs (miRNAs) have emerged as important players in the regulation of T-cell functionality. However, comprehensive insight into the extent of age-related miRNA changes in T cells is lacking. We established miRNA expression patterns of CD45RO- naïve and CD45RO+ memory T-cell subsets isolated from peripheral blood cells from young and elderly individuals. Unsupervised clustering of the miRNA expression data revealed an age-related clustering in the CD45RO- T cells, while CD45RO+ T cells clustered based on expression of CD4 and CD8. Seventeen miRNAs showed an at least 2-fold up- or downregulation in CD45RO- T cells obtained from young as compared to old donors. Validation on the same and independent samples revealed a statistically significant age-related upregulation of miR-21, miR-223 and miR-15a. In a T-cell subset analysis focusing on known age-related phenotypic changes, we showed significantly higher miR-21 and miR-223 levels in CD8+CD45RO-CCR7- TEMRA compared to CD45RO-CCR7+ TNAIVE-cells. Moreover, miR-21 but not miR-223 levels were significantly increased in CD45RO-CD31- post-thymic TNAIVE cells as compared to thymic CD45RO-CD31+ TNAIVE cells. Upon activation of CD45RO- TNAIVE cells we observed a significant induction of miR-21 especially in CD4+ T cells, while miR-223 levels significantly decreased only in CD4+ T cells. Besides composition and activation, we showed a borderline significant increase in miR-21 levels upon an increasing number of population doublings in CD4+ T-cell clones. Together, our results show that ageing related changes in miRNA expression are dominant in the CD45RO- T-cell compartment. The differential expression patterns can be explained by age related changes in T-cell composition, i.e. accumulation of CD8+ TEMRA and CD4+ post thymic expanded CD31- T cells and by cellular ageing, as demonstrated in a longitudinal clonal culture model.
 
Overall design MicroRNA profiling was performed in eight T cell subsets: CD4 naive (CD3+CD4+CD45RO-), CD8 naive (CD3+CD4-CD45RO-), CD4 memory (CD3+CD4+CD45RO+) and CD8 memory (CD3+CD4-CD45RO+) T cells derived from 5 healthy young and 5 healthy old participants.
 
Contributor(s) Teteloshvili N, Kluiver J, van der Geest KS, van der Lei RJ, Jellema P, Pawelec G, Brouwer E, Kroesen BJ, Boots AM, van den Berg A
Citation(s) 26360056
Submission date May 22, 2015
Last update date Dec 09, 2015
Contact name Anke van den Berg
E-mail(s) a.van.den.berg01@umcg.nl
Phone +31503611476
Organization name University Medical Center Groningen
Department Department of Pathology and Medical Biology
Street address Hanzeplein 1
City Groningen
ZIP/Postal code 9700RB
Country Netherlands
 
Platforms (1)
GPL8227 Agilent-019118 Human miRNA Microarray 2.0 G4470B (miRNA ID version)
Samples (8)
GSM1695154 Young naive CD4
GSM1695155 Young naive CD8
GSM1695156 Young memory CD4
Relations
BioProject PRJNA284773

Download family Format
SOFT formatted family file(s) SOFTHelp
MINiML formatted family file(s) MINiMLHelp
Series Matrix File(s) TXTHelp

Supplementary file Size Download File type/resource
GSE69191_RAW.tar 6.8 Mb (http)(custom) TAR (of TXT)
Processed data included within Sample table

| NLM | NIH | GEO Help | Disclaimer | Accessibility |
NCBI Home NCBI Search NCBI SiteMap