U.S. flag

An official website of the United States government

Format
Items per page
Sort by

Send to:

Choose Destination

Links from GEO DataSets

Items: 20

1.

Transcriptomic and functional deficits in human TREM2-/- microglia impair response to Alzheimer's pathology in vivo [bulk RNA-seq]

(Submitter supplied) Bulk RNA sequencing data comparing TREM2 WT and KO microglia responses to treatment with dead neurons.
Organism:
Homo sapiens
Type:
Expression profiling by high throughput sequencing
Platform:
GPL20301
18 Samples
Download data: H5, TSV
Series
Accession:
GSE158469
ID:
200158469
2.

Transcriptomic and functional deficits in human TREM2-/- microglia impair response to Alzheimer's pathology in vivo

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Homo sapiens
Type:
Expression profiling by high throughput sequencing
Platform:
GPL20301
46 Samples
Download data: H5, MTX, TSV
Series
Accession:
GSE158470
ID:
200158470
3.

Transcriptomic and functional deficits in human TREM2-/- microglia impair response to Alzheimer's pathology in vivo [scRNA-seq]

(Submitter supplied) scRNA-sequencing of human xenotransplanted microglia isogenic for TREM2 after exposure to amyloid pathology
Organism:
Homo sapiens
Type:
Expression profiling by high throughput sequencing
Platform:
GPL20301
4 Samples
Download data: MTX, TSV
Series
Accession:
GSE158234
ID:
200158234
4.

Transcriptomic and functional deficits in human TREM2-/- microglia impair response to Alzheimer’s pathology in vivo [RNA-seq]

(Submitter supplied) RNA-sequencing of human iPS-microglia isogenic for TREM2 after multiple treatments
Organism:
Homo sapiens
Type:
Expression profiling by high throughput sequencing
Platform:
GPL20301
24 Samples
Download data: TXT
5.

The TREM2-APOE pathway drives the transcriptional phenotype of dysfunctional microglia in neurodegenerative diseases VI

(Submitter supplied) Microglia play a pivotal role in the maintenance of brain homeostasis, but lose their homeostatic function during the course of neurodegenerative disorders. We identified a specific APOE-dependent molecular signature in microglia isolated from mouse models of amyotrophic lateral sclerosis, multiple sclerosis and Alzheimer’s disease (SOD1, EAE and APP-PS1) and in microglia surrounding neuritic A-plaques in human Alzheimer’s disease brain. more...
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL19057
39 Samples
Download data: TXT
Series
Accession:
GSE102564
ID:
200102564
6.

The TREM2-APOE pathway drives the transcriptional phenotype of dysfunctional microglia in neurodegenerative diseases V

(Submitter supplied) Microglia play a pivotal role in the maintenance of brain homeostasis, but lose their homeostatic function during the course of neurodegenerative disorders. We identified a specific APOE-dependent molecular signature in microglia isolated from mouse models of amyotrophic lateral sclerosis, multiple sclerosis and Alzheimer’s disease (SOD1, EAE and APP-PS1) and in microglia surrounding neuritic A-plaques in human Alzheimer’s disease brain. more...
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL19057
18 Samples
Download data: TXT
Series
Accession:
GSE102563
ID:
200102563
7.

The TREM2-APOE pathway drives the transcriptional phenotype of dysfunctional microglia in neurodegenerative diseases IV

(Submitter supplied) Microglia play a pivotal role in the maintenance of brain homeostasis, but lose their homeostatic function during the course of neurodegenerative disorders. We identified a specific APOE-dependent molecular signature in microglia isolated from mouse models of amyotrophic lateral sclerosis, multiple sclerosis and Alzheimer’s disease (SOD1, EAE and APP-PS1) and in microglia surrounding neuritic A-plaques in human Alzheimer’s disease brain. more...
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL19057
20 Samples
Download data: TXT
Series
Accession:
GSE102562
ID:
200102562
8.

The TREM2-APOE pathway drives the transcriptional phenotype of dysfunctional microglia in neurodegenerative diseases

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Mus musculus
Type:
Expression profiling by array; Expression profiling by high throughput sequencing
4 related Platforms
246 Samples
Download data: RCC
Series
Accession:
GSE101689
ID:
200101689
9.

The TREM2-APOE pathway drives the transcriptional phenotype of dysfunctional microglia in neurodegenerative diseases III

(Submitter supplied) Microglia play a pivotal role in the maintenance of brain homeostasis, but lose their homeostatic function during the course of neurodegenerative disorders. We identified a specific APOE-dependent molecular signature in microglia isolated from mouse models of amyotrophic lateral sclerosis, multiple sclerosis and Alzheimer’s disease (SOD1, EAE and APP-PS1) and in microglia surrounding neuritic A-plaques in human Alzheimer’s disease brain. more...
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL23813
50 Samples
Download data: RCC
Series
Accession:
GSE101688
ID:
200101688
10.

The TREM2-APOE pathway drives the transcriptional phenotype of dysfunctional microglia in neurodegenerative diseases II

(Submitter supplied) Microglia play a pivotal role in the maintenance of brain homeostasis, but lose their homeostatic function during the course of neurodegenerative disorders. We identified a specific APOE-dependent molecular signature in microglia isolated from mouse models of amyotrophic lateral sclerosis, multiple sclerosis and Alzheimer’s disease (SOD1, EAE and APP-PS1) and in microglia surrounding neuritic A-plaques in human Alzheimer’s disease brain. more...
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL23812
56 Samples
Download data: RCC
Series
Accession:
GSE101687
ID:
200101687
11.

The TREM2-APOE pathway drives the transcriptional phenotype of dysfunctional microglia in neurodegenerative diseases I

(Submitter supplied) Microglia play a pivotal role in the maintenance of brain homeostasis, but lose their homeostatic function during the course of neurodegenerative disorders. We identified a specific APOE-dependent molecular signature in microglia isolated from mouse models of amyotrophic lateral sclerosis, multiple sclerosis and Alzheimer’s disease (SOD1, EAE and APP-PS1) and in microglia surrounding neuritic A-plaques in human Alzheimer’s disease brain. more...
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL23811
63 Samples
Download data: RCC
Series
Accession:
GSE101686
ID:
200101686
12.

Prior activation state shapes the microglia response to anti-human TREM2 in a mouse model of Alzheimer's disease

(Submitter supplied) Triggering receptor expressed on myeloid cells 2 (TREM2) sustains microglia response to brain injury stimuli including apoptotic cells, myelin damage, and amyloid β (Aβ). Alzheimer’s Disease (AD) risk is associated with the TREM2R47H variant, which impairs ligand binding and consequently microglia responses to Aβ pathology. Here we tested whether TREM2 engagement by an agonistic mAb, hT2AB, designated as a surrogate ligand facilitates microglia responses in 5XFAD transgenic mice that accumulate Aβ and express either the common TREM2 variant (TREM2CV) or TREM2R47H. more...
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL24247
24 Samples
Download data: MTX, TSV, TXT, XLSX
Series
Accession:
GSE156183
ID:
200156183
13.

TREM2 Acts Downstream of CD33 in Modulating Microglial Pathology in Alzheimer's Disease

(Submitter supplied) CD33-/- and/or TREM2-/- mice were crossed with the 5xFAD mouse model of Alzheimer’s disease to generate single and double CD33/TREM2 knock-out mice on 5xFAD background. Transcriptome and gene expression analyses were performed to analyze the impact of CD33 and/or TREM2 knock-out on the transcriptome of microglia in the context of amyloid pathology. The results revealed that CD33 and/or TREM2 knock-out reprogrammed microglial gene expression signatures in 5xFAD mice in an age-dependent manner. more...
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL17021
73 Samples
Download data: XLSX
Series
Accession:
GSE132508
ID:
200132508
14.

Trem2 effects on brain resident myeloid cells in PS2APP model

(Submitter supplied) Comparing Trem2-KO;PS2APP and Trem2-WT;PS2APP CD11b+ cells reveals the role of Trem2 in microglial gene expression in amyloid-laden brains. The "SAMPLE_ID" sample characteristic is a sample identifier internal to Genentech. The ID of this project in Genentech's ExpressionPlot database is PRJ0014430
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL17021
13 Samples
Download data: TSV
Series
Accession:
GSE140744
ID:
200140744
15.

Expression data of iPS microglia treated with TREM2 agonist antibody

(Submitter supplied) Loss-of-function variants of triggering receptor expressed on myeloid cells 2 (TREM2) increase the risk of developing Alzheimer's disease (AD). The mechanism through which TREM2 contributes to the disease (TREM2 activation vs inactivation) is largely unknown. Here, we analyzed changes in a gene set downstream of TREM2 to determine whether TREM2 signaling is modified by AD progression. We generated an anti-human TREM2 agonistic antibody and defined TREM2 activation in terms of the downstream expression changes induced by this antibody in microglia developed from human induced pluripotent stem cells (iPSC). more...
Organism:
Homo sapiens
Type:
Expression profiling by high throughput sequencing
Platform:
GPL17303
9 Samples
Download data: TXT
16.

Off target expression data from iPSC derived microglia treated with APOE/TREM2 ASOs for 24h/48h. The iPSC cells are from a wild type donor (BIONi10C).

(Submitter supplied) Microglia play important roles in maintaining brain homeostasis and neurodegeneration. The discovery of genetic variants in genes predominately or exclusively expressed in myeloid cells, factors for Alzheimer’s disease (AD) highlights the importance of microglial biology in the brain. such as Apolipoprotein E (APOE) and triggering receptor expressed on myeloid cells 2 (TREM2), as the strongest risk factors for Alzheimer’s disease (AD) highlights the importance of microglial biology in the brain. more...
Organism:
Homo sapiens
Type:
Expression profiling by array
Platform:
GPL31262
93 Samples
Download data: CEL
Series
Accession:
GSE243243
ID:
200243243
17.

Alzheimer’s disease neuroinflammatory risk genes can be targeted with RNase-H active antisense oligonucleotides in human microglia

(Submitter supplied) Microglia play important roles in maintaining brain homeostasis. The discovery of genetic variants in the genes encoding Apolipoprotein E (APOE) and triggering receptor expressed on myeloid cells 2 (TREM2) as the strongest risk factors for Alzheimer’s disease (AD) highlights the importance of microglial biology in the brain. The sequence, structure and function of microglial proteins are poorly conserved across species, and this hampered the development of APOE and TREM2 targeting therapeutic strategies. more...
Organism:
Homo sapiens; Mus musculus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL31277
24 Samples
Download data: TXT
Series
Accession:
GSE219284
ID:
200219284
18.

TREM2 regulates microglial lipid metabolism during aging in mice [RNA-Seq]

(Submitter supplied) TREM2 is a microglial-specific gene implicated in late-onset Alzheimer's Disease (AD). Recent studies have identified that Trem2-deficient mice exhibit transcriptional changes in microglial gene expression that minimize the upregulation of lipid metabolism and lysosomal genes in AD disease models. We detect similiarly attenuated expression of lipid metabolism genes in microglia isolated from brains of aged Trem2 knockout mice.
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL21103
56 Samples
Download data: TAB
Series
Accession:
GSE134031
ID:
200134031
19.

TREM2 regulates microglial cholesterol metabolism upon chronic phagocytic challenge

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platforms:
GPL24247 GPL21103
134 Samples
Download data
Series
Accession:
GSE130627
ID:
200130627
20.

TREM2 regulates microglial cholesterol metabolism upon chronic phagocytic challenge [single-cell RNA-Seq]

(Submitter supplied) TREM2 is a microglial-specific gene implicated in late-onset Alzheimer's Disease (AD). Recent studies have identified that Trem2-deficient mice exhibit transcriptional changes in microglial gene expression that minimize the upregulation of lipid metabolism and lysosomal genes in AD disease models. We find that chronic phagocytic challenge from demyelination generates similiarly attenuated expression of lysosomal and lipid metabolism genes in microglia isolated from Trem2 knockout mouse brain.
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL24247
4 Samples
Download data: CSV, TXT
Series
Accession:
GSE130626
ID:
200130626
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

db=gds|term=|query=1|qty=3|blobid=MCID_666b58206e9d376f23192c57|ismultiple=true|min_list=5|max_list=20|def_tree=20|def_list=|def_view=|url=/Taxonomy/backend/subset.cgi?|trace_url=/stat?
   Taxonomic Groups  [List]
Tree placeholder
    Top Organisms  [Tree]

Find related data

Recent activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...
Support Center