U.S. flag

An official website of the United States government

Format
Items per page
Sort by

Send to:

Choose Destination

Links from GEO DataSets

Items: 20

1.

Efficient and quantitative high-throughput tRNA sequencing

(Submitter supplied) Despite its biological importance, transfer RNA (tRNA) could not be adequately sequenced due to the abundant presence of post-transcriptional modifications and extensive structure that interfere with cDNA synthesis and adapter ligation. We achieve efficient and quantitative tRNA sequencing by removing base methylations using engineered demethylases and using a highly processive thermo-stable reverse transcriptase without the need for adapter ligation (DMTRT-tRNA-seq). more...
Organism:
Homo sapiens
Type:
Expression profiling by high throughput sequencing
Platform:
GPL15433
8 Samples
Download data: TXT
2.

tRNA Modification Identification and Quantification through High Throughput Sequencing

(Submitter supplied) We report the identification and quantification of Watson-Crick modifications in tRNA and rRNA through the use of high throughput sequencing. We apply the recently published DM-tRNA-Seq method to generate demethylase treated and untreated 293T samples, and using computational methods we are able to flag sites using a modification index. This index allows us to generate site-resolved information about modification that we can use to identify and quantify Watson-Crick face modifications in tRNA and rRNA. more...
Organism:
Homo sapiens
Type:
Other; Non-coding RNA profiling by high throughput sequencing; Expression profiling by high throughput sequencing
Platform:
GPL15433
5 Samples
Download data: TXT
Series
Accession:
GSE76434
ID:
200076434
3.

Determination of tRNA aminoacylation levels by high throughput sequencing

(Submitter supplied) Here we develop a high throughput sequencing method that enables accurate determination of charged tRNA fractions at single base resolution (Charged tRNA-seq). Our method takes advantage of the recently developed DM-tRNA-seq method, but includes additional chemical steps that specifically remove the 3'A residue in the uncharged tRNA. Charging fraction is obtained by counting the fraction of A-ending reads versus A+C-ending reads for each tRNA species. more...
Organism:
Homo sapiens
Type:
Expression profiling by high throughput sequencing
Platform:
GPL11154
6 Samples
Download data: TXT, XLSX
Series
Accession:
GSE97259
ID:
200097259
4.

Conservation of m5C in tRNAs in the kingdom Plantae

(Submitter supplied) Here we use bisulfite conversion of RNA combined with high-throughput IIlumina sequencing (RBS-seq) to identify single-nucleotide resolution of m5C sites in transfer RNAs of all three sub-cellular transcriptomes across six diverse species that include, the single-celled algae Nannochloropsis oculata, the macro algae Caulerpa taxifolia and multi-cellular higher plants Arabidopsis thaliana, Brassica rapa, Triticum durum and Ginkgo biloba.
Organism:
Ginkgo biloba; Brassica rapa; Caulerpa taxifolia; Arabidopsis thaliana; Triticum turgidum subsp. durum; Nannochloropsis oculata
Type:
Other; Non-coding RNA profiling by high throughput sequencing
6 related Platforms
14 Samples
Download data: XLS, XLSX
Series
Accession:
GSE68448
ID:
200068448
5.

Conservation of m5C in rRNA in the kingdom Plantae

(Submitter supplied) Here we use bisulfite conversion of RNA combined with high-throughput IIlumina sequencing (RBS-seq) to identify single-nucleotide resolution of m5C sites in non-coding ribosomal RNAs of all three sub-cellular transcriptomes across six diverse species that included, the single-celled algae Nannochloropsis oculata, the macro algae Caulerpa taxifolia and multi-cellular higher plants Arabidopsis thaliana, Brassica rapa, Triticum durum and Ginkgo biloba. more...
Organism:
Triticum turgidum subsp. durum; Caulerpa taxifolia; Ginkgo biloba; Arabidopsis thaliana; Brassica rapa; Nannochloropsis oculata
Type:
Other; Non-coding RNA profiling by high throughput sequencing
6 related Platforms
13 Samples
Download data: XLSX
Series
Accession:
GSE68447
ID:
200068447
6.

tRNA 5-methylcytosine in Arabidopsis thaliana

(Submitter supplied) Here we use bisulfite conversion of RNA combined with high-throughput IIlumina sequencing (RBS-seq) to identify single-nucleotide resolution of m5C sites in transfer RNAs of all three sub-cellular transcriptomes of Arabidopsis thaliana. 5-methylcytosine sites in tRNAs were also determined in Arabidopsis T-DNA knockouts for the RNA methyltransferases TRM4A, TRM4B, TRDMT1, NSUN5 and NOP2A.
Organism:
Arabidopsis thaliana
Type:
Other; Non-coding RNA profiling by high throughput sequencing
Platform:
GPL17970
11 Samples
Download data: XLS, XLSX
Series
Accession:
GSE68445
ID:
200068445
7.

rRNA 5-methylcytosine in Arabidopsis thaliana

(Submitter supplied) Here we use bisulfite conversion of RNA combined with high-throughput IIlumina sequencing (RBS-seq) to identify single-nucleotide resolution of m5C sites in ribosomal RNAs of all three sub-cellular transcriptomes in Arabidopsis thaliana. m5C sites in rRNAs were also anlyzed in Arabidopsis T-DNA knockouts for the RNA methyltransferases TRM4A, TRM4B, TRDMT1, NSUN5, NOP2A, NOP2B and NOP2C.
Organism:
Arabidopsis thaliana
Type:
Non-coding RNA profiling by high throughput sequencing; Other
Platform:
GPL17970
25 Samples
Download data: XLS, XLSX
Series
Accession:
GSE68444
ID:
200068444
8.

The m7G tRNA methylome regulates embryonic stem cell self-renewal and differentiation

(Submitter supplied) tRNAs are subject to numerous modifications including methylation. Mutations in the human N7-methylguanosine (m7G) methyltransferase complex METTL1-WDR4 cause primordial dwarfism and brain malformation yet the molecular and cellular function in mammals is not well understood. We developed m7G methylated tRNA immunoprecipitation sequencing (MeRIP-Seq) and tRNA reduction and cleavage sequencing (TRAC-Seq) to reveal the m7G tRNA methylome in mouse embryonic stem cells (mESCs). more...
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing; Other
Platform:
GPL19057
26 Samples
Download data: TXT
Series
Accession:
GSE112670
ID:
200112670
9.

Analysis of queuosine and 2-thio tRNA modifications by high throughput sequencing

(Submitter supplied) Queuosine (Q) is a conserved tRNA modification at the wobble anticodon position of tRNAs that read the codons of amino acids Tyr, His, Asn, and Asp. Q-modification in tRNA plays important roles in the regulation of translation efficiency and fidelity. Queuosine tRNA modification is synthesized de novo in bacteria, whereas the substrate for Q-modification in tRNA in mammals is queuine, the catabolic product of the Q-base of gut bacteria. more...
Organism:
Homo sapiens; Escherichia coli
Type:
Other
Platforms:
GPL24676 GPL21433
29 Samples
Download data: TSV
Series
Accession:
GSE196016
ID:
200196016
10.

Dts-seq: a simple method of library preparation for a highly reproducible characterization of the tRNA epitranscriptome by deep sequencing

(Submitter supplied) High-throughput sequencing of cellular tRNAs is severely hindered by the presence of base modifications. These modifications impair the reverse transcription (RT) enzyme and prevent a large fraction of transcripts to be converted into cDNA in conventional sequence library preparation. Recent attempts to circumvent this issue made use of enzymatic treatments to remove methyl groups (Cozen et al. 2015; Zeng et al. more...
Organism:
Escherichia coli str. K-12 substr. MG1655
Type:
Non-coding RNA profiling by high throughput sequencing
Platform:
GPL18956
15 Samples
Download data: TXT
Series
Accession:
GSE135937
ID:
200135937
11.

Comparative tRNA-seq for rapid profiling of tRNA modifications in a non-model organism

(Submitter supplied) tRNAs are heavily decorated with post-transcriptional modifications (tRNA modifications). Profile of tRNA modifications in non-model organisms are largely uncharacterized. Here using high-throughput sequencing, sites and frequency of tRNA modifications are predicted in Vibrio cholerae and Escherichia coli. During cDNA synthesis, some modifications cause misincorporation of a wrong base or termination of reverse transcription (RT). more...
Organism:
Vibrio cholerae; Escherichia coli
Type:
Non-coding RNA profiling by high throughput sequencing
Platforms:
GPL21022 GPL16085
16 Samples
Download data: TXT
Series
Accession:
GSE147614
ID:
200147614
12.

Coordination of mRNA and tRNA methylations by TRMT10A

(Submitter supplied) The post-transcriptional modification of mRNA and tRNA provides an additional layer of regulatory complexity during gene expression. TRMT10A is a tRNA methyltransferase that installs N1-methylguanosine (m1G), while FTO performs demethylation on N6-methyladenosine (m6A) and N6,2'-O-dimethyladenosine (m6Am) in mRNA. We find that this tRNA methyltransferase TRMT10A interacts with mRNA demethylase FTO (ALKBH9), both in vitro and inside cells. more...
Organism:
Homo sapiens
Type:
Other
Platforms:
GPL11154 GPL21697
12 Samples
Download data: TXT, XLSX
13.

Transcriptome Mapping of Internal N7-methylguanosine Methylome in Mammalian mRNA

(Submitter supplied) N7-methylguanosine (m7G) is a positively charged, essential modification at the 5′ cap of eukaryotic mRNA, regulating mRNA export, translation, and splicing. m7G also occurs internally within tRNA and rRNA, but its existence and distribution within eukaryotic mRNA remain to be investigated. Here, we show the presence of internal m7G sites within mammalian mRNA. We then performed transcriptome-wide profiling of internal m7G methylome using m7G-MeRIP sequencing (MeRIP-seq). more...
Organism:
Homo sapiens; Mus musculus
Type:
Methylation profiling by high throughput sequencing; Other
Platforms:
GPL19057 GPL18573 GPL20301
104 Samples
Download data: BED, FPKM_TRACKING, TXT, XLSX
Series
Accession:
GSE112276
ID:
200112276
14.

Statistically robust methylation calling for whole-transcriptome bisulfite sequencing reveals distinct methylation patterns for mouse RNAs

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Mus musculus
Type:
Methylation profiling by high throughput sequencing
Platform:
GPL13112
19 Samples
Download data: TXT
Series
Accession:
GSE81825
ID:
200081825
15.

Statistically robust methylation calling for whole-transcriptome bisulfite sequencing reveals distinct methylation patterns for mouse RNAs [mRNA bisulfite sequencing]

(Submitter supplied) (Cytosine-5) RNA methylation plays an important role in several biologically and pathologically relevant processes. However, owing to methodological limitations, the transcriptome-wide distribution of this mark has remained largely unknown. We have previously established RNA bisulfite sequencing as a method for the analysis of RNA (cytosine-5) methylation patterns at single-base resolution. Furthermore, next-generation sequencing has provided opportunities to establish transcriptome-wide maps of this modification. more...
Organism:
Mus musculus
Type:
Methylation profiling by high throughput sequencing
Platform:
GPL13112
3 Samples
Download data: TXT
Series
Accession:
GSE81824
ID:
200081824
16.

Statistically robust methylation calling for whole-transcriptome bisulfite sequencing reveals distinct methylation patterns for mouse RNAs [Whole-transcriptome bisulfite sequencing]

(Submitter supplied) (Cytosine-5) RNA methylation plays an important role in several biologically and pathologically relevant processes. However, owing to methodological limitations, the transcriptome-wide distribution of this mark has remained largely unknown. We have previously established RNA bisulfite sequencing as a method for the analysis of RNA (cytosine-5) methylation patterns at single-base resolution. Furthermore, next-generation sequencing has provided opportunities to establish transcriptome-wide maps of this modification. more...
Organism:
Mus musculus
Type:
Methylation profiling by high throughput sequencing
Platform:
GPL13112
16 Samples
Download data: TXT
Series
Accession:
GSE81823
ID:
200081823
17.

Chemical manipulation of m1A mediates its detection in human tRNA

(Submitter supplied) N1-methyl adenosine (m1A) is a wide-spread RNA modification present in tRNA, rRNA and mRNA. m1A modification sites in tRNAs are evolutionary conserved and its formation on tRNA is catalyzed by methyltransferase TRMT61A and TRMT6 complex. m1A promotes translation initiation and elongation. Due to its positive charge under physiological conditions, m1A can notably modulate RNA structure. It also blocks Watson-Crick base pairing and causes mutation and truncation during reverse transcription. more...
Organism:
Homo sapiens
Type:
Non-coding RNA profiling by high throughput sequencing
Platform:
GPL15520
12 Samples
Download data: TXT
Series
Accession:
GSE253657
ID:
200253657
18.

Whole transcriptome RNA-seq of undiseased human prefrontal cortex

(Submitter supplied) We report the application of high-throughput RNA sequencing to the human prefrontal cortex. The brain dataset was obtained by sequencing total RNAs extracted from the dorsolateral prefrontal cortex of five deceased human patients with no apparent pathology, followed by depletion of ribosomal RNA to obtain all non-rRNA coding and non-coding RNAs in the human brain transcriptome.
Organism:
Homo sapiens
Type:
Non-coding RNA profiling by high throughput sequencing; Expression profiling by high throughput sequencing
Platform:
GPL11154
5 Samples
Download data: TXT
Series
Accession:
GSE46523
ID:
200046523
19.

Small RNA-seq of undiseased human brain

(Submitter supplied) The surprising observation that virtually the entire human genome is transcribed means we know very little about the function of many emerging classes of RNAs, except their astounding diversity. Traditional RNA function prediction methods rely on sequence or alignment information, which are limited in their ability to classify classes of non-coding RNAs (ncRNAs). To address this, we developed CoRAL, a machine learning-based approach for classification of RNA molecules. more...
Organism:
Homo sapiens
Type:
Non-coding RNA profiling by high throughput sequencing
Platform:
GPL9115
4 Samples
Download data: TXT
Series
Accession:
GSE43335
ID:
200043335
20.

Microbiome characterization using transfer RNA sequencing

(Submitter supplied) Here we report a direct tRNA sequencing protocol and software to simultaneously examine the composition and biological activity of naturally occurring microbial communities. Our analysis of mouse gut microbiome with tRNA-seq and 16S ribosomal RNA gene amplicons revealed comparable microbial community structures, and additional physiological insights into the microbiome through tRNA abundance and modifications.
Organism:
Barnesiella viscericola; mouse gut metagenome; Escherichia coli; Staphylococcus aureus; Bacillus subtilis
Type:
Non-coding RNA profiling by high throughput sequencing
6 related Platforms
28 Samples
Download data: TXT, XLSX
Series
Accession:
GSE100263
ID:
200100263
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

db=gds|term=|query=1|qty=16|blobid=MCID_666aab50a997087fbe17f868|ismultiple=true|min_list=5|max_list=20|def_tree=20|def_list=|def_view=|url=/Taxonomy/backend/subset.cgi?|trace_url=/stat?
   Taxonomic Groups  [List]
Tree placeholder
    Top Organisms  [Tree]

Find related data

Recent activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...
Support Center